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1 Introduction

Many problems that are known to have algorithms exhibiting an exponential quantum speedup over the best

known classical algorithms are special instances of the Hidden Subgroup Problem (HSP). For the HSP, we

are firstly given a function f : G → S from a finite group G to a set S that is constant on left cosets and

distinct on different cosets of a hidden subgroup H ≤ G. In other words, we have that f(x) = f(y) if and

only if x−1y ∈ H. Such a function f is said to hide H. We will assume we can query f efficiently as a black

box. Given f , we would like find a set of generators for H.

For example, in Simon’s problem, the group in question is G = (Z/2Z)n, the set of n-bit strings under

bitwise addition, and the hidden subgroup is H = {0, s} for some unknown s ∈ G. Number-theoretical

applications such as Shor’s algorithm for factoring integers and the discrete logarithm problem also reduce

to instances of the HSP for Abelian groups. In fact, the HSP has an efficient quantum solution over any

finite Abelian group [HRT00, Wan10], since every finite Abelian group is a direct product of cyclic groups

(groups of the form Z/dZ for some d with the operation being addition modulo d.) Algorithms for these

problems crucially use the quantum Fourier transform, also known as Fourier sampling.

The HSP for non-Abelian groups has many attractive applications. In particular, we are interested in the

graph isomorphism and graph automorphism problems, which reduce to the HSP for the symmetric group

Sn. We will outline this reduction as well as a method to define a Fourier transform over any finite group

in Section 2. Since one can compute the Fourier transform over a symmetric group in quantum polynomial

time (in n) [Bea97], the Fourier sampling method provides a promising approach for solving the HSP over

Sn. However, the Fourier sampling method fails for Sn for various reasons. For example, we will show in

Section 3 that the Fourier sampling algorithm cannot distinguish between conjugate subgroups, and this

limits the types of subgroups recoverable for groups such as Sn, which have many conjugate subgroups.

2 Background

2.1 Representation Theory

To generalize the familiar Fourier transform to arbitrary groups G, we will need to use some representation

theory that we will outline here. While representation theory can be used in more general settings than

what we will present, we will always assume that G is a finite group and V is a finite-dimensional vector

space over the complex numbers C. The proofs of the following facts can be found in representation theory

textbooks such as [Sag13] or [SS96].

Definition 1. A representation of G is a homomorphism ρ : G → GL(V ) where GL(V ) is the set of all

invertible linear transformations V → V. The representation is said to be unitary if it is a homomorphism

ρ : G→ U(V ) where U(V ) is the set of unitary transformations on V . The dimension of the representation

ρ is the dimension of the vector space V .

Example 1. The trivial representation defined by ρ(g) = 1 for any g ∈ G is a one-dimensional represen-

tation of any group.
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Example 2. Let 0 ≤ k ≤ n− 1 and let G = Z/nZ be the cyclic group of order n. The map φ(x) = e2πkxi/n

for any x ∈ G is a one-dimensional representation of G.

Example 3. Let V be a vector space of dimension |G| and label its standard basis vectors by |g〉 for

g ∈ G. Define ρ : G 7→ GL(V ) by ρ(g) |x〉 = |gx〉 for any basis vector |x〉 ∈ V . This is a |G|-dimensional

representation of G known as the (left) regular representation, and ρ(g) is a |G|×|G| permutation matrix

in the basis {|g〉}g∈G.
For example, if G = Z/2Z = {0, 1}, its regular representation can be realized by the matrices ρ(0) =(

1 0

0 1

)
and ρ(1) =

(
0 1

1 0

)
.

Given a group G, we are interested in determining all possible representations of the group. The notion

of irreducible representations is useful for this task.

Definition 2. A representation ρ : G→ GL(V ) of a group G is irreducible if no nontrivial proper subspace

W of the vector space V has ρ(g)W ⊆W for all g ∈ G (the subspace W is not fixed by all ρ(g).)

Example 4. Any one-dimensional representation of a group is irreducible since the only proper subspaces

of any one-dimensional vector space is {0}.

Example 5. For any non-trivial group, the regular representation is not irreducible since if W is the one-

dimensional subspace spanned by
∑
g∈G |g〉, then ρ(g)W ⊆ W (i.e. it has a proper subspace which is fixed

by all ρ(g).)

Definition 3. Two representations ρ1, ρ2 of a group G are said to be equivalent if they are the same up

to change of basis (there exists A ∈ GL(V ) such that Aρ1(g)A−1 = ρ2(g) for every g ∈ G.)

The following are some facts about irreducible representations.

Theorem 1 (Maschke’s Theorem, [Sag13, Theorem 1.5.3]). Every representation ρ of a finite group G

decomposes into a direct sum of irreducible representations, which can made equivalent to a unitary and

block-diagonal matrix representation by a change of basis.

Hence, without loss of generality, we will now assume all of our representations to be unitary.

Theorem 2 (Schur’s Lemma, [Sag13, Corollary 1.6.8]). Let V be a complex vector space and ρ be an

irreducible representation of G on V . Suppose M : V → V is a linear transformation for which ρ(g)M =

Mρ(g) for all g ∈ G. Then M = λI for some λ ∈ C, where I is the identity matrix.

The characters of representations can be used to investigate them.

Definition 4. Let ρ be a matrix representation of a group G. Its character χρ is a function G→ C defined

by χρ(g) = Tr(ρ(g)), where Tr is the trace of a matrix. We call a character χρ of ρ irreducible if ρ is an

irreducible representation.

Example 6. Let ρ be the regular representation of a group G. Then χρ(e) = |G| for the identity element

e ∈ G and χρ(g) = 0 for any other element (since gx = x if and only if g = e.) In fact, for any representation

ρ of dimension d, χρ(e) = d.

Recall that elements g1 and g2 in a group are conjugate if there is exists some element h for which

g1 = hg2h
−1. Since conjugacy of elements is an equivalence relation on the elements of the group, we call

the resulting equivalence classes the conjugacy classes of the group. We now recall some results about

conjugate elements in Sn since we will use them later. We will write an element σ ∈ Sn by its cycle

decomposition.

Example 7 ([DF04, Section 4.3]). In the symmetric group Sn, recall that the cycle type of an element

σ ∈ Sn written as a cycle decomposition is the length of its cycles sorted in non-increasing order. For

example, the permutation (145)(23) ∈ σ has cycle type (3, 2). The permutations σ, τ ∈ Sn are conjugate if

and only if they have the same cycle type. For instance, (145)(23) and (123)(45) are conjugate. Hence, for

every integer partition λ ` n, there is unique conjugacy class in Sn consisting of permutations of that cycle

type λ.
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The relationship between conjugacy classes and representations of a finite group is explained in the

following theorem.

Theorem 3. Let G be a finite group and χρ be a character of some representation.

(a) ([Sag13, Proposition 1.8.5]) If g and h are conjugate in G, then χρ(g) = χρ(h).

(b) ([Sag13, Corollary 1.9.4]) The character χρ can be decomposed as χρ =
∑
imiχσi where each mi is a

non-negative integer and χσi is an irreducible character.

(c) ([Sag13, Proposition 1.10.1c]) The number of irreducible representations of G is equal to the number of

conjugacy classes of G.

Next, suppose FG is the set of all functions from a group G 7→ C. One can define an inner product on two

functions ψ, φ ∈ FG by setting 〈ψ, φ〉G = 1
|G|
∑
g∈G φ(g)ψ(g). Under this inner product, characters satisfy

certain orthogonality relations listed below.

Theorem 4. Let ρ1, ρ2 be irreducible representations of a group G. Then the following hold:

(a) ([Sag13, Theorem 1.9.3]) 〈χρ1 , χρ2〉 =

{
1 ρ1, ρ2 equivalent

0 otherwise

(b) ([Sag13, Theorem 1.10.3]) If g, h ∈ G and K is the conjugacy class of g in G, then

∑
χ

χ(g)χ(h−1) =

{
|G|
|K| g, h are conjugate

0 otherwise
,

where the sum is over all irreducible characters of G.

Corollary 1. If χρ is the character of a non-trivial irreducible representation of G, then
∑
g∈G χ(g) = 0.

Proof. If χρ is non-trivial, it is orthogonal to the trivial and irreducible character χ(g) = 1 for every g ∈ G
by Theorem 4(a).

Theorem 5 ([Sag13, Proposition 1.10.1b]). Let Ĝ be the set of irreducible representations of G. Then∑
ρ∈Ĝ d

2
ρ = |G| where dρ is the dimension of ρ.

Finally, suppose H ≤ G is a subgroup. We can construct representations of H from G.

Definition 5. Let H ≤ G is a subgroup and ρ is a representation of G, the restriction ρH is a representation

of H defined by ρH(h) = ρ(h) for h ∈ H.

Note that although ρ may be an irreducible representation of G, the restriction ρH is in general not an

irreducible representation of H.

2.2 Graph Isomorphism as an HSP

The graph isomorphism problem is the problem of determining whether two finite graphs are isomorphic.

Two graphs G and H are said to be isomorphic if there exists a bijection f : V (G)→ V (H) from the vertices

of G to the vertices of H, such that there is an edge (u, v) ∈ G if and only if there is an edge (f(u), f(v)) ∈ H.

An automorphism of a graph G is an isomorphism between G and itself. These concepts are illustrated in

Figure 1. The graph automorphism problem is the problem of finding (a generating set of) Aut(G), the

automorphism group of a graph G. The graph isomorphism problem is polynomial time reducible to the

graph automorphism problem. In particular, the graph automorphism problem is believed to be at least as

hard as the graph isomorphism problem [SL17].
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Figure 1: Graph (a) is isomorphic to graph (b) via the isomorphism (12)(34). However, (12)(34) is not an

automorphism of graph (a). Instead, graph (c) illustrates an automorphism of graph (a) by the permutation

(13). Neither (a), (b), or (c) is isomorphic to the graph (d) since they have a different number of edges.

2.2.1 Graph Automorphism Problem to HSP Reduction

Let G be a graph with n vertices. Note that Aut(G) embeds into Sn the symmetric group of n symbols;

any automorphism of G is a permutation of its n vertices. Let H = Aut(G) be the hidden subgroup of Sn
of interest. Consider the function f : Sn → X, where X is the set of graphs created by permutations of G,

by σ 7→ σ(G). We can think of this operation as creating a new graph σ(G) by a permutating the rows and

columns of the adjacency matrix of the original graph G according to the permutation σ.

Notice that f is constant on cosets of H in Sn, since for σ, τ ∈ Sn, we have that σ(G) = τ(G) if and only

if τ−1σ ∈ Aut(G). Hence, we have created an instance of the hidden subgroup problem where f : Sn 7→ X

hides the automorphism group of graph G.

2.2.2 Graph Isomorphism Problem to Graph Automorphism Problem Reduction

We give the reduction due to Jozsa in [Joz01]. Consider two connected graphs A and B both with n

vertices, their disjoint union C = A tB, and the automorphism group Aut(C) which embeds into S2n. We

only consider the case where both A and B have n vertices as it is a necessary condition for them to be

isomorphic. Any automorphism of C must either permute the vertices of A and B separately, or swap the

their vertices entirely since no vertex in A is connected to a vertex in B.

Therefore if H = Sn × Sn (and identify it in S2n), and σ ∈ S2n a permutation which swaps {1, 2, . . . , n}
with {n+ 1, n+ 2, . . . , 2n}, then Aut(C) is a subset of H ∪ σ(H). Without loss of generality, we can choose

σ = (1 n+ 1)(2 n+ 2) . . . (n 2n), which is an involution (a permutation with σ2 = e.)

If A and B are not isomorphic, Aut(C) lies entirely in H. Otherwise, if A and B are isomorphic, then

for every τ ∈ Aut(C) ∩H, and the composition στ ∈ σ(H) is also an automorphism of C. In this case, half

of Aut(C) lies in H, and the other half lies in σ(H). We can easily check if an element τ of Aut(C) lies in

H or σ(H) by evaluating τ(1), so if we randomly sample elements of Aut(C), with high probability we can

determine if A and B are isomorphic. In the general case where G and H may not be connected, it suffices

to check there is some isomorphism between pairs of their connected components.

By a result of Erdös and Renyi in [ER63], for almost all graphs we have that Aut(G) = {e}, the trivial

group, in the sense that the probability that a random n-vertex graph has a trivial automorphism group tends

to one as n → ∞. Hence, we do not lose much generality by considering the rigid graph isomorphism

problem, where we assume that the graphs to be tested have trivial automorphism group. In this case, if

G,H are graphs of this type, it suffices to check if Aut(G tH) = {e} or if Aut(G tH) ' Z/2Z to check if

G and H are isomorphic or not by the previous remarks.

2.3 Quantum Fourier Transform over Arbitrary Groups

Definition 6. Let f : G→ C, ρ an irreducible representation of G of dimension dρ. The Fourier transform

of f with respect to ρ is defined to be a dρ × dρ matrix f̂(ρ) =

√
dρ
|G|

∑
g∈G

f(g)ρ(g).

Let Ĝ be the set of distinct irreducible representations (up to equivalence) of G. Then the Fourier

transform of f is said to be the collection of matrices { f̂(ρ) | ρ ∈ Ĝ }.

By Theorem 5, the Fourier transform of f is an operation from C|G|, since the function f is specified

by |G| values, to C|G|, since the set of resulting matrices given by the Fourier transform are described by
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∑
ρ∈Ĝ d

2
ρ = |G| numbers. Furthermore, the Fourier transform is also a unitary operation in the sense that

〈f, g〉 =
∑
ρ∈Ḡ

〈
f̂(ρ), ĝ(ρ)

〉
F
, where 〈A,B〉F = Tr(A∗B) =

∑
i,j aijbij is the Frobenius inner product on

matrices.

Hence, the quantum Fourier transform over an arbitrary finite group may be expressed as an operation on

quantum states since it is unitary. As such, we can identify a function f with the superposition
∑
g∈G f(g) |g〉

and write the Fourier transform as the transformation:

∑
g∈G

f(g) |g〉 7→
∑
ρ∈Ĝ

√
dρ
|G|

∑
1≤i,j≤dρ

∑
g∈G

f(g)ρ(g)


i,j

|ρ, i, j〉 . (1)

Note that in general, we will treat the representation ρ, the row i, and the column j as separate registers.

The standard algorithm for the HSP is referred to as Fourier sampling, and is outlined below. Let G

be a finite group, H a subgroup of G, and f a function which hides H.

1. Prepare a uniform superposition over the elements of G, with a second register initialized to zero:

|ψ0〉 =
1√
|G|

∑
g∈G
|g〉 ⊗ |0〉 .

2. Query f and XOR it with the second register, resulting in the state:

|ψ1〉 =
1√
|G|

∑
g∈G
|g〉 ⊗ |f(g)〉 .

3. Measure the second register. If we measure |f(ch)〉 = |f(c)〉 for some coset cH of H, the first register

is in a uniform superposition over the coset cH:

|ψ2〉 =
1√
|H|

∑
h∈H

|ch〉 ⊗ |f(c)〉 .

Let 1cH(g) denote the indicator function of the coset cH. Then we can write the first register as:
1√
|H|

∑
g∈G 1cH(g) |g〉 .

4. Let Ĝ be the set of irreducible representations of G. Perform a Fourier transform on the first register

with respect to the indicator function to obtain:

1√
|H|

∑
ρ∈Ĝ

√
dρ
|G|

∑
1≤i,j,≤dρ

(1̂cH(ρ))i,j |ρ, i, j〉 =
1√
|H|

∑
ρ∈Ĝ

√
dρ
|G|

∑
1≤i,j,≤dρ

∑
g∈G

1cH(g)ρ(g)


i,j

|ρ, i, j〉

=
∑
ρ∈Ĝ

√
dρ
|G||H|

∑
1≤i,j,≤dρ

(∑
h∈H

ρ(ch)

)
i,j

|ρ, i, j〉 ,

since 1cH was an indicator function of some coset.

5. Make a measurement on the state obtained in Step 4. We may either measure the first register only to

obtain a representation ρ, which is known as weak Fourier sampling. Otherwise, we can measure

ρ and then subsequently measure the row and column registers i and j. This is known as strong

Fourier sampling.

We then repeat Steps 1-5 a number of times to obtain a set of representations and possibly some row

and column indices. It is hoped that H can be reconstructed from the representations observed by this

algorithm. Recall that the kernel of a representation, Ker ρ, is the set of elements g ∈ G for which ρ(g) = I,
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the identity. In the case where H is promised to be a normal subgroup of G, if we choose s = c log2 |G| for

appropriate c, then with high probability H =
⋂s
i=1 Ker ρi, where ρi are the representations observed during

Fourier sampling [HRT00, Theorem 5].

Note that if G is Abelian (for instance, in the factoring problem), all irreducible representations of an

Abelian group are 1-dimensional and furthermore there are exactly |G| of them. Therefore the Fourier

transform in Step 4 can be simplified to
∑
ρ∈Ĝ

√
1

|G||H|
∑
h∈H ρ(ch) |ρ〉 . Taking concretely the case where

G = Z/nZ and H = {e}, each coset is just a single element {x}. Hence, since we have calculated all irreducible

representations of G in Example 2, we get that the state |x〉 becomes the state 1√
n

∑n−1
k=0 e

2πikx
n |k〉 after the

transform. This is exactly the Fourier transform used in Shor’s algorithm.

3 Weak Fourier Sampling

3.1 Analysis of the Algorithm

We now analyze the weak Fourier sampling algorithm given in Section 2.3.

Theorem 6 ([HRT00, Theorem 4]). Suppose f hides a subgroup H. Then, the probability of measuring a

representation ρ in Step 5 of the weak Fourier sampling algorithm is
|H|
|G|

dρ 〈χρH , χ1H 〉H =
dρ
|G|

∑
h∈H

χρ(h)

(by the definition of the inner product), where dρ is the dimension of ρ.

Proof. Let ‖A‖ be the Frobenius norm of matrix A given by ‖A‖2 = Tr(A∗A). As ρ is a homomorphism and

ρ(c) is a unitary matrix:

∑
1≤i,j≤dρ

∣∣∣∣∣∣
√

dρ
|G||H|

(∑
h∈H

ρ(ch)

)
i,j

∣∣∣∣∣∣
2

=
dρ
|G||H|

∥∥∥∥∥∑
h∈H

ρ(ch)

∥∥∥∥∥
2

=
dρ
|G||H|

∥∥∥∥∥ρ(c)
∑
h∈H

ρ(h)

∥∥∥∥∥
2

=
dρ
|G||H|

∥∥∥∥∥∑
h∈H

ρ(h)

∥∥∥∥∥
2

.

Note that this calculation also shows that the probability of measuring ρ ∈ Ĝ in the first register is

independent of the coset state to which the original superposition collapses in Step 3 of the algorithm.

Therefore we wish to calculate the matrix
∑
h∈H ρ(h). We consider the restriction ρH as we only evaluate

ρ on H. ρH may not be irreducible over H, but it decomposes into irreducible representations over H by

Theorem 1. Then for some unitary matrix U and irreducible representations σi of H, we have that,

∑
h∈H

ρH(h) = U


∑
h∈H σ1(h) 0 · · · 0

0
∑
h∈H σ2(h) · · · 0

...
...

. . .
...

0 0 · · ·
∑
h∈H σs(h).

U†.
Let Mi =

∑
h∈H σi(h). Notice that for any h′ ∈ H, and for the irreducible representation σi ∈ Ĥ we

have:

σi(h
′)Mi = σi(h

′)
∑
h∈H

σi(h) =
∑
h∈H

σi(h
′h) =

∑
h∈H

σi(hh
′) = Miσi(h

′),

as we can replace h′h with hh′ because we are summing over all elements of the group H. Then by

Schur’s Lemma (Theorem 2), Mi =
∑
h∈H σi(h) = λI for some λ ∈ C. Taking the trace on both sides, we

get:

dρλ = Tr

(∑
h∈H

σi(h)

)
=
∑
h∈H

Tr(σi(h)) =
∑
h∈H

χσi(h) = |H|〈χσi , χ1〉H =

{
|H| σi trivial

0 otherwise

by orthogonality of characters (Corollary 1).

Therefore Mi = 0 if σi is nontrivial. If σi is trivial, then Mi = |H|. Finally, we have:
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∥∥∥∥∥∑
h∈H

ρH(h)

∥∥∥∥∥
2

= |H|2〈χρH , χ1H 〉H ,

because 〈χρH , χ1H 〉H counts the number of trivial irreducible representations ρH contains by Theorem

3(b). Hence, putting this back into Equation 3.1, we have proved that the probability of measuring ρ is
dρ
|G||H|

|H|2〈χρH , χ1H 〉H =
|H|
|G|

dρ〈χρH , χ1H 〉H .

Recall that two subgroups H1, H2 ≤ G are conjugate if there is an element g ∈ G for which H2 =

{ghg−1 : h ∈ H1} = gHg−1.

Example 8. Let σ ∈ Sn and τ ∈ Sn be of the same cycle type and H1 = 〈σ〉 and H2 = 〈τ〉 be subgroups

generated by those elements respectively. Then H1 and H2 are conjugate.

Corollary 2. Suppose H1, H2 = gH1g
−1 are conjugate subgroups in G. Then the weak Fourier sampling

algorithm cannot distinguish between H1 and H2, in the sense that weak Fourier sampling produces the same

distribution on representations whether a function f hides H1 or f hides H2.

Proof. If H1 and H2 = gH1g
−1 are conjugate, there is an isomorphism φ : H1 → H2 given by φ(x) = gxg−1.

Hence,
∑
h2∈H2

χρ(h2) =
∑
h1∈H1

χρ(gh1g
−1) =

∑
h1∈H1

χρ(h1) since characters are constant on conjugacy classes

(Theorem 3(a)). Hence, the probability distribution on representations induced from hiding H1 is the same

as that of hiding H2 by Theorem 6.

3.2 Weak Fourier Sampling Fails for Rigid Graph Automorphism

Note that Corollary 2 does not rule out an efficient solution to the rigid graph automorphism problem using

weak Fourier sampling, since the trivial group cannot be conjugate to any non-trivial group. Our main goal

in this section is to prove that weak Fourier sampling fails to solve the rigid graph automorphism problem.

From Theorem 6, we get that if the hidden subgroup is trivial, then the probability that representation

ρ is measured is
dρ
|G|χρ(e) =

d2ρ
|G| . If H is some non-trivial subgroup, we say that H is distinguishable if the

probability distribution on representations induced from hiding H has sufficiently large L1 distance from this

distribution, specifically when a polylog(|G|) number of samples can be used to solve the hidden subgroup

problem under the promise that the given function hides either H or the identity.

Definition 7. A subgroup H ≤ G is distinguishable from the identity using weak Fourier sampling if

there is a constant c for which

DH =
1

|G|
∑
ρ

dρ

∣∣∣∣∣∣
∑

h∈H h6=e

χρ(h)

∣∣∣∣∣∣ ≥ (log |G|)−c

Otherwise, H is indistinguishable. Since |Sn| = n!, we need DH ≥ 1
poly(n) for some polynomial in n if

H is a distinguishable group of Sn.

Theorem 7 ([HRT00, Theorem 6]). Suppose H = {e, σ} ≤ S2n where σ = (1n)(2 n+ 1) . . . (n 2n). Then H

is indistinguishable from the identity for sufficiently large n.

The proof uses the character theory of Sn, especially the Murnaghan-Nakayama rule. Recall from

Section 2 that cycle types and irreducible representations of Sn are labelled by integer partitions. If λ, ρ are

partitions of n, we write χλ(ρ) as the value of the character χλ evaluated at any permutation of cycle type

ρ.

Definition 8. Given any partition λ = (λ1, . . . , λn) of n, the diagram D(λ) associated to λ is an array of

left justified boxes with λi boxes in row i from the top. A skew shape ψ in a diagram is the subset of a

diagram whose interior is connected and does not contain any 2× 2 square. The height of a skew shape ψ,
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. . .

. .

(a)

. . ∗
∗ ∗

(b)

∗ ∗ .

∗ ∗

(c)

∗ . .

∗ ∗

(d)

. .

(e)

∗ ∗ ∗
. .

(f)
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. ∗

(g)

Figure 2: (a) is a diagram of shape (3, 2). The cells indicated by * in (b) and (c) are subsets of the diagram

in (a) which are not skew shapes. The cells indicated by * in (d), (f), and (g) are subsets of (a) which is a

skew shape in (a) of heights 1, 0, 1 respectively. (e) is the diagram (a) with the skew shape (d) removed and

it is a domino.

written as ht(ψ) is the one less the number of rows it intersects in D(λ). If ψ is a skew shape in the diagram

of λ whose removal leaves a diagram of partition shape, we write λ \ ψ for the resulting partition. Finally,

we call a skew shape with two cells a domino. These concepts are illustrated in Figure 2.

Theorem 8 (Murnaghan-Nakayama Rule, [Sag13, Theorem 4.10.2]). Let λ = (λ1, . . . , λn) and ρ = (ρ1, . . . , ρn)

be partitions of n and D(λ) be the diagram of λ. Then, χλ(ρ) =
∑

ψ⊆D(λ)

(−1)ht(ψ)χλ\ψ(ρ′), summed over all

skew shapes ψ with ρ1 boxes where λ \ψ is a partition, ρ′ = (ρ2, . . . , ρn), and with base case χλ(ρ) = 1, with

both λ and ρ the empty partition.

Example 9. We have χ(1,1)(2) = −1 and χ(2)(2) = 1 since both (1, 1) and (2) are skew shapes where

removing two cells leaves the empty partition.

Now to compute χ(3,2)(3, 2), note that there are 3 possible skew hooks with 3 boxes that can be removed

from (3, 2), namely Figure 2(d), (f) and (g), to leave a partition shape. Since they have heights 1,0, and 1

respectively, then χ(3,2)(3, 2) = −χ(2)(2) + χ(2)(2)− χ(1,1)(2) = 1.

Before proving the main theorem, we make the following observation about dominos and diagrams.

Lemma 1. For any diagram λ with n cells, there are at most 4
√
n dominos λD whose removal from λ yields

a diagram of partition shape.

Proof. We proceed by induction on n and the claim follows for n ≤ 2. Now note that since λ has n cells, its

topmost row has at least
√
n cells and if not, the leftmost column has at least

√
n cells for there to be n cells in

total. In the first case, there are most two dominos in λ intersecting the topmost row whose removal leaves a

partition shape (namely its leftmost or rightmost cell and one to the left or below). Otherwise, in the second

case, there is at most two dominos in λ intersecting the leftmost column whose removal leaves a partition

shape (namely its bottommost or topmost cell and the one above or to the right). Any other domino with

this property must lie entirely in the remaining shape with ≤ n−
√
n cells with either the first row or first

column removed from λ. Hence, by the inductive hypothesis, we have that |λD| ≤ 4
√
n−
√
n + 2 ≤ 4

√
n

since
√
n−

√
n−
√
n =

√
n

√
n+
√
n−
√
n
≥ 1

2 .

Lemma 2. For any partition λ of 2n, we have |χλ((2n))| ≤ 4n(
√

2n)n.

Proof. We proceed by induction on n and we already have already verified the case for n = 1 by Example

9. Now, let n > 1. By the Murnaghan-Nakayama rule, we have that |χλ((2n))| ≤
∑
λ′

|χλ′((2n−1))| where λ′

is a partition of 2n − 2 created by removing a domino from λ. By Lemma 1 and the inductive hypothesis,

|χλ(2n)| ≤
(
4
√

2n
)

(4n−1)
(√

2n− 2
)n−1 ≤ 4n(

√
2n)n.

Proof of Theorem 7. We have from Theorem 5 that dρ ≤
√

(2n)! for any representation of S2n, and also

that the number of partitions of 2n is 2c
√

2n for some constant c ([HRT00, Appendix]). Hence, from these

results and Lemma 2, for sufficiently large n,

DH ≤
2c
√

2n√
(2n)!

(4n(
√

2n)n) ≤ 2c
′n

√
nn

(2n)!
≤ 2c

′n

√
1

n!
≤ 2−c

′n ≤ 1

poly(n)
,

letting c′ = c
√

2 + 3 and since n! ≥ 16c
′n for sufficiently large n.
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3.3 Weak Fourier Sampling fails to Find Automorphism Groups of Graphs

In the previous section, we proved that if H ≤ Sn is a subgroup of constant size, weak Fourier sampling

may not be able to determine H efficiently. We may then wonder if weak Fourier sampling may still fail to

determine H if H is a subgroup of larger size. Indeed, if we have that |H| = n!
2 , then H is normal in Sn and

hence we have an efficient solution to the hidden subgroup problem by the normal subgroup reconstruction

algorithm in [HRT00, Theorem 5]. However, we will prove in this section that there are subgroups of poly(n)

size in Sn that may not be distinguishable by the weak Fourier sampling algorithm.

Definition 9. Let n ≥ 3. The dihedral group Dn is set of symmetries of a regular n-gon. As embdedded

into Sn, it consists of n rotations (cycles of length n) and n reflections (elements of order 2). If n is odd,

every reflection has some fixed point, and if n is even, there are n/2 reflections fixing two points and n/2

reflections without fixed points.

Note the if Cn is the n-vertex cycle group with vertices {1, . . . , n} and edges (i, i+ 1) for i = 1, . . . , n− 1

and (n, 1), then the automorphism group of the graph Cn is dihedral group Dn. Figure 3 represents the

generators of Aut(C4) ' D4.

1 2

34

(a)
4 1

23

(b)
1 4

32

(c)

Figure 3: Graph (a) is the cycle C4, graph (b) represents a rotation automorphism and graph (c) represents

a reflection automorphism.

Theorem 9 ([SL17], Theorem 6). The subgroup Dn ≤ Sn is indistinguishable from the identity using weak

Fourier sampling for sufficiently large n.

The original proof of Theorem 9 in [SL17] uses induced representations of Dn to Sn. We provide a shorter

proof of Theorem 9 using the following result due to Kempe et al.

Theorem 10 ([KS05], Proposition 1). Suppose H ≤ G, G has non-identity conjugacy classes C1, . . . , Ck

and DH is as given in Definition 7, then DH ≤
k∑
i=1

|Ci ∩H||Ci|−
1
2 .

Proof. Using the triangle inequality, we have

DH ≤
1

|G|
∑
ρ

∑
h∈H,h 6=e

dρ|χρ(h)| = 1

|G|
∑

h∈H,h 6=e

∑
ρ

dρ|χρ(h)|. (2)

Now, let h ∈ H be fixed and using the Cauchy-Schwarz inequality,

∑
ρ

dρ|χρ(h)| ≤

(∑
ρ

d2
ρ

)1/2(∑
ρ

|χρ(h)|2
)1/2

. (3)

We have by Theorem 5 that
∑
ρ d

2
ρ = |G| and that

∑
ρ |χρ(h)|2 = |G|

|C(h)| by Theorem 4(b) where C(h) is

the conjugacy class of h. Hence, combining these observations with Equation 2 and Equation 3 yields

DH ≤
1

|G|
∑

h∈H,h 6=e

|G|1/2
(
|G|
|C(h)|

)1/2

=
1

|G|

k∑
i=1

|H ∩ Ci||G|1/2
(
|G|
|Ci|

)1/2

=

k∑
i=1

|H ∩ Ci||Ci|−1/2 (4)

since every h ∈ H occurs in exactly one conjugacy class.

Our main tool in the proof is the following result.

9



Theorem 11 ([Sta12, Proposition 1.3.2]). The number of permutations σ ∈ Sn with αi cycles of length i is

n!

n∏
i=1

1

iαiαi!
.

Proof of Theorem 9. Let H = Dn and firstly assume that n ≥ 3 is even. Then since Sn has (n − 1)! cycles

of length n and
n!

2ii!
involutions fixing n− 2i elements, then we have that

DH ≤
n√

(n− 1)!
+
n

2

(
2n/2(n/2)!

n!

)1/2

+
n

2

(
2(n−2)/2((n− 2)/2)!

n!

)1/2

≤ n√
(n− 1)!

+ n

(
2n/2(n/2)!

n!

)1/2

.

We have for n ≥ 6 that (n/2)!
n! ≤ 2−n and also for such n, we have (n − 1)! ≥ 2n−2. Hence, using these

bounds,

DH ≤ n2−(n−2)/2 + n2n/42−n/2 = 2n(2−n/2) + n2−n/4 ≤ 3n2−n/4 ≤ 2−n/8.

for sufficiently large n. Otherwise, in the case where n is odd, we have that for n ≥ 7 using similar

estimates that

DH ≤
n√

(n− 1)!
+ n

(
2(n−1)/2((n− 1)/2)!

n!

)1/2

≤ 2n2−n/2 + n2(n−1)/42−(n+1)/2

= 2n2−n/2 + n2−(n+3)/4 ≤ 3n2−n/4 ≤ 2−n/8.

Hence in either case, DH < 1
poly(n) for sufficiently large n.

Note that Theorem 10 can also be used to give a proof of Theorem 7 in a similar way.

4 Conclusion and Open Problems

In this paper, we have analyzed the weak Fourier sampling algorithm and proved that it may not give an

efficient algorithm for the hidden subgroup problem for subgroups H ≤ Sn of polynomial size. A natural

question is to exactly characterize the subgroups of Sn that are distinguishable. Towards this, [KS05] provides

a characterization of families of all polynomial sized subgroups of Sn that are distinguishable and shows that

families of subgroups of size |H| ≥ (n!)ε with ε > 0 are distinguishable using certain results derived from

the classification of finite simple groups. It would be interesting to find more elementary proofs and find

exponential size groups which are distinguishable or indistinguishable. We believe that the group (Z/2Z)l

realized as a subgroup of S2l is a candidate for such an indistinguishable group but proving this may require

additional analysis of the characters of Sn along the lines of Section 3.2.

We mentioned the strong Fourier sampling algorithm briefly in Section 2.3. It was shown in [MRRS07]

that strong Fourier sampling can solve hidden subgroup problems for groups of type Z/pZ n Z/qZ with

p|q−1, where n is the semidirect product of two groups, whereas weak Fourier sampling cannot. (Note that

the dihedral groups Dn are isomorphic to Z2 n Zn so these groups are in general not Abelian). However,

in [MRS08], it is shown that strong Fourier sampling fails to solve the rigid graph automorphism problem.

Furthermore, if we allow the Fourier sampling algorithm on k independent registers and make entangled

measurements on them, it is shown in [HMR+10] that an exponential number of measurements are needed

so as long as k = o(n log n). Surveying these results could be useful to prove further lower bounds on the

usefulness of Fourier sampling for different hidden subgroup problems. Indeed Dinh et al. in [DMR10] have

derived some criteria for when a subgroup of Sn or GL2(Z/pZ) for p a prime is distinguishable by strong

Fourier sampling due to the relevance of these groups in the constructing McEliece-type cryptosystems.

Finally, although Fourier sampling has had great successes in developing quantum algorithms, it has also

been shown to be a dead end for these instances of the hidden subgroup problem over Sn. However, the

celebrated result that these problems have polynomial query complexity in [EHK04] should give us some

hope that a polynomial time quantum algorithm is possible. Innovative ideas in quantum algorithms will

ultimately be required for these tasks.
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