
Quantum Computing: Foundations to Frontier Fall 2018

Lecture 3

Lecturer: Henry Yuen Scribes: Seyed Sajjad Nezhadi, Angad Kalra
Nora Hahn, David Wandler

1 Overview

In Lecture 3, we started off talking about Quantum Teleportation and were introduced to Quantum
Computation. We explore the Quantum Circuit model, various quantum gates, application of
quantum entanglement, and learn to do a step-by-step analysis of quantum algorithms.

2 Quantum Teleportation

Quantum Teleportation is a protocol for transferring quantum states using only classical commu-
nication and entanglement. To do this we construct and analyze our first quantum circuit.

2.1 Quantum Teleportation

Imagine Alice and Bob are very far apart but have the means of classical communication (eg.
phone line). Alice wishes to communicate her qubit, |ψ〉 = α|0〉 + β|1〉 ∈ C2, with Bob. However,
physically transferring the qubit would be difficult as quantum states are fragile. Even if she knew
the classical description of her qubit (i.e. the amplitudes α and β) and wanted to tell Bob, Alice
could be required to send infinitely many bits as α and β could be transcendental numbers.

However, with quantum entanglement, we can do this much more efficiently. We will show as long
as Alice and Bob each hold 1 qubit of the entangled EPR pair |Φ〉 = 1√

2
(|00〉+ |11〉) ∈ C2, we can

teleport |ψ〉 with only two classical bits of communication!
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2.2 Circuit Implementation

Quantum circuits represent applications of gates (unitary operations) and measurements to the
qubits. The first two qubits are for Alice and the third for Bob. The circuit wires move forward
with time. At each time step i we get the quantum state |φi〉.

Alice|ψ〉 • H •

Alice •

Bob σx σz |ψ〉

|φ0〉 |φ1〉 |φ2〉 |φ3〉 |φ4〉

Gate Descriptions

1. CNOT – 2 qubit gate: CNOT |a, b〉 = |a, a⊕ b〉 where a is the control and b is the target.
In the circuit diagram, CNOT is represented by the black circle, connected by a line to an ⊕
symbol. The black circle represents the control qubit, and the ⊕ is on the target qubit.

2. Hadamard – single qubit unitary: H = 1√
2

[
1 1
1 −1

]
. This single-qubit unitary has the fol-

lowing behavior on the standard basis: H|0〉 = |+〉 = 1√
2

(|0〉+ |1〉), and H|1〉 = |−〉 =
1√
2

(|0〉 − |1〉).

3. – Measurement in the standard basis {|0〉, |1〉}

Alice carries out the gates up to the measurement part. She obtains two classical bits (that is what
the double-lines coming out of the measurement gates indicate), called z (top wire) and x (middle
wire). She relays these two classical bits to Bob over their classical communication channel.

Bob, after receiving (z, x), will first apply a controlled Pauli X gate depending on the value of x.
If x = 0, then he does nothing to his qubit (or in other words, applies the identity). If x = 1, then

he applies the Pauli X gate, which is a single qubit bit flip: σx =

[
0 1
1 0

]
. This single-qubit unitary

has the following behavior on the standard basis: σX |0〉 = |1〉, and σX |1〉 = |0〉.

Then, if z = 0, he does nothing (i.e. applies the identity) to his qubit; otherwise, if z = 1, then

he applies the Pauli Z gate, which is: σz =

[
1 0
0 −1

]
. This single-qubit unitary has the following

behavior on the standard basis: σZ |0〉 = |0〉, and σZ |1〉 = −|1〉.

Note: Here, one can think of the controlled Pauli X gate as being equivalent to a CNOT gate
where the control qubit is classical.
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2.3 Circuit Analysis

We claim that, after the protocol is completed, Bob’s qubit (the third qubit of the circuit) is in the
state |ψ〉 – the state that Alice originally received! To show this, we will compute the state of the
circuit at each time step.

|φ0〉 = |ψ〉 ⊗ |Φ〉 = (α|0〉+ β|1〉)⊗ 1√
2

(|00〉+ |11〉) =
1√
2

(α|000〉+ α|011〉+ β|100〉+ β|111〉) (1)

|φ1〉 =
1√
2

(α|000〉+ α|011〉+ β|110〉+ β|101〉) by applying CNOT gate to the first two qubits.

(2)

|φ2〉 = H|φ1〉 =
1√
2

(αH|0〉|00〉+ αH|0〉|11〉+ βH|1〉|10〉+ βH|1〉|01〉)

=
1√
2

(α|+〉|00〉+ α|+〉|11〉+ β|−〉|10〉+ β|−〉|01〉)

=
1

2
(α|000〉+ α|100〉+ α|011〉+ α|111〉+ β|010〉 − β|110〉+ β|001〉 − β|101〉) (3)

Step 3: Alice measures both her qubits to obtain outcomes (z, x). Suppose she gets:

• (z = 0, x = 0). To get the post-measurement state, only look at terms with ”00” in first two
positions. Unnormalized, the post-measurement state is

1

2
|00〉 ⊗ (α|0〉+ β|1〉) =

1

2
|00〉 ⊗ |ψ〉

Since Bob receives (z = 0, x = 0), he doesn’t apply σX nor σZ , and his qubit is in the state
|ψ〉. This outcome occurs with probability 1/4.

• (z = 0, x = 1). The unnormalized post-measurement state is 1
2 |01〉 ⊗ (β|0〉 + α|1〉). Bob

applies σX to his qubit, yielding

σx(β|0〉+ α|1〉) = |ψ〉

for Bob’s qubit. This outcome also occurs with probability 1/4.

• (z = 1, x = 0). The unnormalized post-measurement state is 1
2 |10〉 ⊗ (α|0〉 − β|1〉). Bob

applies σZ to his qubit, yielding

σz(α|0〉 − β|1〉) = |ψ〉

for Bob’s qubit. This outcome also occurs with probability 1/4.

• (z = 1, x = 1). The unnormalized post-measurement state is 1
2 |11〉 ⊗ (−β|0〉 + α|1〉). Bob

applies σX , and then σZ to his qubit, yielding

σz(σx(−β|0〉+ α|1〉)) = σz(α|0〉 − β|1〉)) = |ψ〉

for Bob’s qubit. This outcome also occurs with probability 1/4.

Therefore with probability P = 4× 1
4 = 1 the third qubit is |ψ〉. Bob always gets Alice’s qubit!

3



A few notes. One thing you may notice is that this seems reminiscent of cloning a state. However,
this does not violate the No-Cloning Theorem (which we saw in Lecture 1), because at the end of
the protocol, only Bob has the state |ψ〉, and Alice only has the measurement outcomes.

Another question that arises is, whether teleportation can be achieved by sending fewer than two
classical bits. It turns out two classical bits are necessary! Also, some communication is necessary;
otherwise this would mean that Alice could transmit information to Bob instantaneously. In other
words, if Alice tries to teleport quantum states to Bob without sending any information, Bob would
not be able to recover the state |ψ〉 (in fact, from his point of view, he just has a uniformly random
bit).

3 Quantum Computation

3.1 The Quantum Circuit Model

A quantum computation is anything that can be computed by a quantum circuit. Quantum
Teleportation was an example of quantum computation. For our purposes, we will define a quantum
circuit to be a combination of single- and two-qubit gates, as well as measurements in the standard
basis. One could also consider models of quantum circuits with say three-qubit gates, but this does
not really affect the model.

Furthermore, when discussing quantum algorithms, we will assume that the measurements all occur
at the very end of the circuit. This is not true of the quantum teleportation circuit, but that is
for the “communication setting”, where one party has to measure in order to communicate with
another party. For algorithms, we can defer all the measurements to the end. This is without loss of
generality in the algorithms setting, as by something called the “Principle of Deferred Measurement”
we can push any intermediate measurements to the end and have an equivalent quantum circuit.

Here is how we interpret the circuit:

|0〉 U •

|0〉 V
X

|0〉
Y

|0〉 U •

• The n qubits usually start off in the |0〉 state (but not always).

• Time runs from left to right.

• At each discrete time step, a gate is applied to at most 2 qubits.

• A gate is a unitary operation.
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Thus, if we ignore the measurements at the end of a quantum circuit, every quantum circuit C
corresponds to a unitary transformation acting on n qubits.

Question: Why does this capture quantum computation?
Given n qubits, what can happen to it? According to the postulates of QM that we talked about,

there are measurements and unitary transformations. The quantum circuit has the measurements,
but what about the unitaries? The unitaries in a quantum circuit act non-trivially on a few qubits,
but a general unitary on n qubits might act on all n qubits in a very complicated fashion.

This next Theorem justifies why we can restrict our attention to two-qubit unitaries.

Theorem 1. Every unitary U on n qubits can be written as a product of two-qubit gate {gi}

U = gT · · · g2g1.

for some T .

Proof. Proof can be found in Chapter 4 of Nielsen and Chuang.

Important note. In the Theorem above, when we say gi is a two-qubit gate, that does not mean
that gi is two-qubit unitary in the product gT · · · g2g1. That wouldn’t make sense, as a two-qubit
unitary is a 4× 4 matrix and U is a 2n × 2n matrix.

Rather, we mean that each gi looks like ĝi ⊗ I where ĝi is a 4 × 4 unitary matrix, and I is the
identity matrix on C2n−2

. We also have to pay attention to how the tensor product is interpreted,
too. For example, if gi represents a two-qubit gate acting on qubits 1 and 2, then gi = ĝi ⊗ I is
interpreted as usual. If gi acts on qubits 3 and 4, then we can write gi = I1,2 ⊗ ĝi ⊗ I5,...,n where
I12 is the identity on qubits 1 and 2, and I5,...,n is the identity on qubits 5 through n. What if
gi acts on qubits 1 and 3 (or any non-consecutive pair of qubits)? There is unfortunately no nice
way to write this, so we just write gi = ĝi ⊗ I where we interpret the identity as acting on qubits
2, 4, 5, . . . , n.

The point is, one needs to pay attention which qubits a gate acts on.

4 Quantum Computation and Quantum Circuit Model

4.1 Discrete, universal gate sets

Consider a general circuit, that means the circuit consists of arbitrary two qubit gates. How many
qubit gates are there which you can apply? Infinite many! But let’s suppose that you can only apply
gates from some discrete, finite set Λ ∈ {two-qubit unitaries}. Is there any chance to construct a
general circuit only with gates from Λ? If the set Λ is chosen carefully, the circuits with gates from
Λ can approximate any general circuit. And in this case Λ is called a universal gate set. Hereafter,
the meaning of the terms approximate and universal gate set will be specified. Notice that the final
measurements are omitted for now, such that circuits are unitaries.
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Definition 2 (ε-approximation). The circuit C εεε-approximates circuit C ′ if

E(C,C ′) = max
|ψ〉
||(C − C ′) |ψ〉|| ≤ ε.

Definition 3 (universal gate set). A gate set Λ is universal if for all general circuits C the
following statement holds:
∀ε > 0 ∃ a Λ-circuit C ′ (gates only from Λ) s.t. E(C,C ′) ≤ ε.

The attempt to approximate any general circuit out of gates from some finite set Λ seems to be
impossible. But the proof idea resembles the relation between the sets of rational and real numbers.
The rational numbers form a dense subset of the real numbers. Analogously, the idea is to show
that Z(Λ) = {all possible Λ-circuits} ⊆ {all n-qubit unitaries} is dense in the set of all n-qubit
unitaries.
In the following, an example for an universal gate set is given.

Example. Consider the discrete, finite set

Λ = {H,S, T, CNOT},

where H (Hadamard gate), S (phase gate) and T (π/8 gate) [NC11] are single-qubit gates and
CNOT is the only two-qubit gate. More precisely, the gates are defined as follows.

H =
1√
2

(
1 1
1 −1

)

S =

(
1 0
0 i

)

T =

(
1 0

0 eiπ/4

)

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Consider a universal gate set. We have seen that there exists a Λ-circuit C ′ which ε-approximates
the general circuit C. But up to now we don’t know anything about the size of C ′. The following
theorem is one of the most important results of quantum computing; it will allow us to conclude
that there is always a circuit C ′ which is not much bigger than C.

Theorem 4 (Solovay-Kitaev Theorem). Let Γ denote a set of single-qubit unitaries. Suppose that

• Γ generates a dense subgroup of SU(2)
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• Γ is closed under inverse.

Then any single-qubit unitary U can be ε-approximated by a product of at most logd(1/ε) gates from
the set Γ for some constant 1 ≤ d < 4.

Proof. A proof can be found in the appendix of, e.g., Nielsen and Chuang.

Corollary 5. Let Λ be a gate set such that Λ = {CNOT}∪Γ where Γ that satisfies the conditions of
the Solovay-Kitaev theorem. Then for any circuit C, there exists a Λ-circuit C ′ that ε-approximates
C ′ and the size of C ′ (the number of gates) is at most the size of C times logd(|C|/ε).

Proof. It turns out that any circuit C consisting of (arbitrary) two-qubit gates has an equivalent
circuit C ′ consisting of single-qubit gates and CNOT gates (a proof can be found in Nielsen an
Chuang). Using the Solovay-Kitaev theorem, we can approximate every single-qubit gate in C ′ up
to ε/|C| accuracy using logd(|C|/ε) gates from Γ.

How do we apply this Corollary to the gate set described above? It does not appear to be closed
under inverse, after all. However, we can augment Λ so that it has inverses: notice that S−1 = S3

and T−1 = T 7. Adding this in will make Λ satisfy the requisite conditions.

In the original theorem the constant was approximated by d ≈ 3.97. Over the years, the estimate
has been improved and today it is proved that the statement even holds for d = 1.

This theorem is very important for quantum computing in practice because developed quantum
algorithms often contain various two (or more) qubit gates. But a real quantum computer cannot
handle an algorithm which uses any kind of gates. Due to the theorem, it is possible to compile
the code down to the gate set of the used machine. Furthermore, there already are fast algorithms
to compute C ′ out of C.

4.2 Oracle access to functions

Two important types of problems which shall be solved are decision and search problems because
many problems can be phrased in the same way. Therefore a lot of the quantum algorithms in this
course will be of one of these types.
The input for both problems is an unknown function f : X → Y but the questions vary as you can
see in the following.

• decision: Does f have some property p? → yes/no

• search: Find x ∈ X s.t. f(x) = 1

Picture of the query model

Now we want to see how these quantum algorithms are working. The quantum algorithms get
access to the unknown function f through query access. As you can see in the following picture,
the circuits get access to another unitary which is called the oracle to f and shortened as UfUfUf .
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Uf

Uf

· · ·

· · ·
· · ·
· · ·

· · ·

Figure 1: A picture of the query model

But what is Uf precisely? How does the oracle behave? As the name oracle suggests, we can ask
for the answer but cannot know how it works inside.

The oracle can be expressed as a unitary operator. Without loss of generality, assume the boolean
function f : {0, 1}m → {0, 1}. Consider a m-qubit x as input register and b as target qubit. Then
the oracle behaves as (m+ 1)-qubit unitary as follows.

Uf |x, b〉 = |x, b⊕ f(x)〉

Generally, if the oracle Uf is applied to a function f : {0, 1}m → {0, 1}n, that means

Uf |x, b〉 = |x, b⊕ f(x)〉,

where x is a m-qubit register and b is a n-qubit register. The notation b⊕f(x) is the n-qubit string
such that the i’th bit is bi ⊕ f(x)i (the parity of bi and the i’th bit of the output f(x)).

Hence, Uf is a 2m+n × 2m+n unitary.

5 Quantum Algorithms

In this section we start to look at particular algorithms that can be implemented on qunatum
computers and how they improve on classical algorithms.

5.1 Deutsch’s Algorithm

This algorithm solves the decision problem: given f : {0, 1} → {0, 1}, decide if f is constant or not
constant. This is a very simple problem, we could just check the two possible inputs, but Deutsch’s
algorithm is able to do it using just one query!
The algorithm is given by the following circuit:

|0〉 H
Uf

H

|1〉 H

|ϕ0〉 |ϕ1〉 |ϕ2〉 |ϕ3〉

To prove that this algorithm solves the decision problem, we follow through the ciruit and write
the quantum state at each step. To start we have

|ϕ0〉 = |0〉 ⊗ |1〉
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Then we apply the Hadamard operator to both qubits:

|ϕ1〉 =H|0〉 ⊗H|1〉 = |+〉 ⊗ |−〉

=
1

2
(|00〉 − |01〉+ |10〉 − |11〉)

Then we apply the oracle operator, Uf :

|ϕ2〉 =
1

2
(|0, 0 + f0〉 − |0, 1 + f0〉+ |1, 0 + f1〉 − |1, 1 + f1〉)

=
1

2

(
|0, f0〉 − |0, f̄1〉+ |1, f1〉 − |1, f̄1〉

)
Notice that here we used the shorthand fi = f(i) and used f̄i to indicate the opposite of fi. From
here, we again apply the Hadamard operator to the first qubit:

|ϕ3〉 =
1

2

(
|+〉|f0〉 − |+〉|f̄0〉+ |−〉|f1〉 − |−〉|f̄1〉

)
=

1

2
√

2

(
|0〉 ⊗

(
|f0〉 − |f̄0〉+ |f1〉 − |f̄1〉

)
+ |1〉 ⊗

(
|f0〉 − |f̄0〉 − |f1〉+ |f̄1〉

))
Now, we measure the first qubit. There are two possibilities for the distribution of outcomes. If f
is constant, then f0 = f1, so the state is:

|ϕ3〉 =
1

2
√

2

(
|0〉 ⊗

(
2|f0〉 − 2|f̄0〉

)
+ |1〉 ⊗ 0

)
=

1√
2
|0〉 ⊗

(
|f0〉 − |f̄0〉

)
Therefore, we will measure 0 with probability 1. On the other hand, if f is not constant, then
f1 = f̄0, so the state is:

|ϕ3〉 =
1√
2
|1〉 ⊗

(
|f0〉 − |f̄0〉

)
In this case, we measure 1 with probability 1. Thus, the algorithm solves the problem of deciding
whether or not f is constant.

5.2 Simon’s Algorithm

Simon’s algorithm is a precursor to Shor’s algorithm, that was created by U of T grad, Daniel Simon.
The search problem that the algorithm solves takes as its input a function f : {0, 1}m → {0, 1}m
that is guarenteed to have the property that ∃s ∈ {0, 1}m such that ∀x, y ∈ {0, 1}mf(x) = f(y) ⇐⇒
x = y or x = y ⊕ s. The problem is to find s.
Classically, this can only be done by checking various pairs until you find two that collide. This
takes at least

√
2m queries. Simon’s algorithm, on the other hand, only needs O(m) queries. It

runs on a 2m-qubit quantum computer. The following subroutine is the basis of Simon’s algorithm:

|0〉⊗m H⊗m
Uf

H⊗m

|0〉⊗m

|ϕ0〉 |ϕ1〉 |ϕ2〉 |ϕ3〉

Notice that the notation |0〉⊗m means |0〉1⊗ |0〉2⊗ · · ·⊗ |0〉m and H⊗m|0〉⊗m means we apply H to
each of the m qubits. Also, since f outputs to {0, 1}m we now need m qubits for the output. Just
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as in Deutsch’s algorithm, we look at the state of the qubits after each step in the circuit. Our
initial state is

|ϕ0〉 = |0〉⊗2m

We then apply the Hadamard gate to the first m qubits:

|ϕ1〉 =
(
H⊗m|0〉⊗m

)
⊗ |0〉⊗m

=
1

2m/2

 ∑
x∈{0,1}m

|x〉

⊗ |0〉⊗m
After this we apply the oracle operator

|ϕ2〉 =
1

2m/2

∑
x∈{0,1}m

|x〉|f(x)〉

Finally, we reapply the Hadamard operator to the first m qubits

|ϕ3〉 =
1

2m/2

∑
x∈{0,1}m

(
H⊗m|x〉

)
|f(x)〉

=
1

2

∑
x∈{0,1}m

∑
y∈{0,1}m

(−1)x·y|y〉|f(x)〉

where x · y =
∑

i xiyi mod 2. The last line is left as an exercise for the reader to confirm. Using
this result to find s is left for the next lecture.

TO BE CONTINUED
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