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1 Introduction

The traditional circuit-based model of quantum computation is strictly based on unitary evolution.
Especially in view of the Principle of Deferred Measurement in the context of implementation of
algorithms with the circuit model, the role of measurement is secondary to unitary quantum gates
- a quantum circuit, sans the final measurements, is the application of a carefully crafted unitary
transformation to a carefully chosen initial quantum state. Measurement is a non-unitary operation
and thereby ruins quantum states.

The cluster state model of quantum computing, also known as a “one-way quantum computer”,
is based on the idea of performing a sequence of single-qubit measurements on some large initial
state, resulting in an output in the form of a several-qubit state. In particular, measurement is
essential to the entirety of any computation, in contrast to the circuit model. This model was first
introduced in [1] (see also [2]), and it has been studied from both the theoretical and experimental
implementation points of view.

The initial state of a computation in this model, called a cluster state, is a specially prepared
entangled state associated to a particularly chosen graph. To perform a quantum computation on
a cluster state, the rules of the game are: (a) the allowed operations are single-qubit measurements
in any basis on any of the nodes of the graph, (b) the basis in which to measure at every stage of
the sequence is conditioned on the outcome of the previous measurement, and (c) efficient classical
processing is allowed on the measurement outcomes. This model of quantum computing, somewhat
surprisingly, is able to simulate any traditional quantum circuit, and thus is a good model of
quantum computation.

There are physical implementations of cluster-state quantum computers, and this is an ac-
tive research area. The traditional linear optics methods, using discrete qubit states, have the
disadvantage that the creation of the cluster state desired in a specific computation must be done
probabilistically [3]. However, there are implementation schemes which use continuous-variable sys-
tems which do not have this property [4], and thus are desirable experimentally. In these schemes,
the cluster state is instead created using squeezed optical modes.

We will describe what is a cluster state and how the cluster-state model of quantum computing
works. We will then demonstrate why the cluster-state model is universal for quantum computing
by explaining how a universal set of quantum gates can be simulated using the framework. Finally,
we will discuss practical implementations, and in particular continuous-variable methods.
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2 Basics of cluster states

A cluster state is an initial, specially prepared entangled quantum state in a measurement-based
quantum computation which we will outline. Such a state is conveniently described as the result of
a preparation procedure which depends on a graph. For quantum computation, the graph is chosen
based on the particular desired algorithm. In this section, we outline basic definitions and explain
the idea behind the model.

2.1 Definition of a cluster state

Let G = (V,E) be a simple graph on n vertices, with V = {v1, . . . , vn} and edges eij = {vi, vj} ∈ E.
An n-qubit cluster state on G is a quantum state |ψG〉 ∈ (C2)⊗n given by

|ψG〉 =
∏
eij∈E

(CZ)ij |+〉⊗n (1)

Here, (CZ)ij denotes the cphase gate applied on qubits i, j, which is

CZ |ab〉 = (−1)ab |ab〉 , a, b ∈ {0, 1}

Note also that the various (CZ)ij commute with each other (which is a consequence of the definition
above), so the product in (1) is well-defined.

In other words, an n-qubit state is obtained by the following procedure:

• Choose a simple graph G on n vertices;

• Prepare n qubits, each in the state |+〉 (here, a correspondence between qubits and vertices
of G is implied);

• Apply a CPHASE gate to each pair of qubits whose corresponding vertices are connected by
an edge in G.

For example, consider |ψG〉 associated to the following graph G.

In this case the state |ψG〉 is constructed starting from |+ + + + +〉 (where the third qubit
corresponds to the central node) and applying four cphase gates, which results in

|ψG〉 =

(
|+ + 0〉+ |− − 1〉

)
|++〉 = |++〉

(
|0 + +〉+ |1−−〉

)
Note that this state looks asymmetric despite G being symmetric, but this is only a consequence
of presentation (and ultimately it is a consequence of cphase being symmetric despite a priori
seeming asymmetric).
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2.2 An alternate characterization

The definition of a cluster state given above is convenient, but one may object to the fact that
two-qubit quantum gates are used in the preparation of a supposedly measurement-only quantum
computer. In this subsection, we describe a way to prepare a cluster state which circumvents
the application of two-qubit unitaries as in the formal definition, thereby exemplifying a truly
measurement-based framework of computation.

Specifically, beginning with the graph-based cluster state |ψG〉, consider the stabilizer group S
of |ψG〉. Define, for v ∈ V , the operator

Sv = Xv

⊕
v′∈Wv

Zv′ ⊗ IV \Wv

where the subscript indicates which qubit the operator acts on, and Wv = {v} ∪ {v′ : {v, v′} ∈ E}
is the set of neighbours of v and v itself.

Fact 1. The cluster state |ψG〉 associated to G satisfies

Sv |ψG〉 = |ψG〉

for all v ∈ V , and it is unique with this property (up to a global phase).

Proof. Choose v ∈ V ; without loss of generality, we can assume v = v1 and its neighbours are
precisely v2, . . . , vl. The last n − l qubits of |ψG〉 are obviously unaffected, so focus on the first l
qubits:

|ϕ〉 :=

l∏
j=2

(CZ)1j |+〉⊗l

=
∑

k∈{0,1}l
(−1)k1(k2+···+kl) |k1k2 · · · kl〉

Now applying Sv, we get

Sv |ϕ〉 = X1Z2 · · ·Zl
∑

k∈{0,1}l
(−1)k1(k2+···+kl) |k1k2 · · · kl〉

= X1

∑
k∈{0,1}l

(−1)(k1+1)(k2+···+kl) |k1k2 · · · kl〉 by definition of Z

=
∑

k∈{0,1}l
(−1)(k1+1)(k2+···+kl) |(k1 + 1)k2 · · · kl〉

= |ϕ〉

and therefore Sv |ψG〉 = |ψG〉.
Uniqueness, namely the fact that the C-span of |ψG〉 is the unique line in H stabilized by

the group Γ = 〈Sv |v ∈ V 〉, follows from a general theorem (Proposition 10.5 in [5]): if Γ is a
subgroup of the Pauli group on n qubits with n− k generators, then the stabilized subspace VΓ is
2k-dimensional if (1) the generators Sv are independent, (2) −I /∈ Γ, and (3) Γ is abelian. Point (2)
is clear, while point (3) follows because X,Z anticommute, but any pair Sv, Sv′ acting on the same
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qubits contains X’s and Z’z acting on the same qubits which come in pairs due to the neighbour
relation - in particular SvSv′ is −1 raised to an even power times Sv′Sv. Finally, (1) follows because
removing any Sv (say v = vi) from the given generating set introduces a new state

|φ〉 = |0〉⊗(i−1) ⊗ |1〉 ⊗ |0〉⊗(n−i)

which is stabilized by the subgroup which is not stabilized by Γ. Points (1)-(3) imply that the
stabilized subspace has dimension 2n−k. But in our case, k = n, hence the subspace has dimension
1, and we are done.

Fact 1 means that in particular we can write down a ”truly” measurement-only preparation
procedure of a cluster state, which involves only measurements and single-qubit unitaries, as follows.
We assume given an initial state of |ψ0〉 = |+〉n, and we first measure all stabilizer generators Sv
in this initial state; note this is possible because all Sv commute. The resulting post-measurement
state |φ〉 is a simultaneous eigenstate of the Sv’s. If all eigenvalues are +1, then by the fact we
must have |φ〉 = |ψG〉. Otherwise, there is some subset W ⊂ V (G) of the vertex set such that
Sv |φ〉 = − |φ〉 for v ∈ W . Then we correct this by applying a sequence of single-qubit operations,
namely

|ψG〉 =
∏
v∈W

Zv |φ〉

where Zv denotes Z applied at the ith qubit, with v = vi in the conventions of the previous section.
To verify, it suffices to consider the case of a single v = vi with Sv |φ〉 = − |φ〉 (so that |φ〉 is in

the +1-eigenspace of all other stabilizer operators). Then first of all, because ZX = −XZ,

SvZi |φ〉 = −ZiSv |φ〉
= Zi |φ〉

so Zi |φ〉 is now in the +1 eigenspace of Sv. On the other hand, since all other Sv′ are by definition
decomposable operators with either the identity or Z acting on the ith qubit, Zi commutes with
Sv′ , and therefore

Sv′Zi |φ〉 = ZiSv′ |φ〉 = Zi |φ〉

so that Zi |φ〉 is still in the +1-eigenspace of Sv′ . By Fact 1, we must have Zi |φ〉 = |ψG〉. The
proof of the general case is identical. Thus, we have a two-step measurement-based procedure for
preparing a cluster state:

• Starting with the |+〉⊗n state, measure all stabilizer generators to obtain a post-measurement
state |φ〉 which is a simultaneous eigenstate of all generators;

• For every vertex v = vi such that Sv |φ〉 = − |φ〉, apply a Z-gate at the ith qubit. The
resulting state must be |ψG〉, up to a global phase.

As an example, consider the following graph G:
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The stabilizer generators are

S1 = X1Z2, S2 = Z1X2Z3Z4, S3 = Z2X3, S4 = Z2X4

Starting with |+ + ++〉, measure all four stabilizer generators, and suppose the resulting eigenstate
is

|φ〉 = |+0 + +〉 − |−1−−〉

It can be directly verified that S2 |ψ〉 = − |ψ〉, and Si |ψ〉 = |ψ〉 for i = 1, 3, 4. Applying Z2 results
in the state

Z2 |φ〉 = |+0 + +〉+ |−1−−〉

On the other hand, the cluster state for G from the original definition is

(CZ)12(CZ)23(CZ)24 |+ + ++〉 = |+0 + +〉+ |−1−−〉

exactly as expected.

2.3 Quantum computing with cluster states

The idea of [1] is that these cluster states can be used as a measurement-based model of quantum
computing. Specifically, a cluster-state quantum computation proceeds as follows:

• Choose a desirable graph G and prepare |ψG〉,

• Determine a partition of the vertices V into processing nodes Vp and output nodes Vo,

• Assign a partial ordering on Vp; this is the order in which the measurements will be made,

• Assign a measurement basis to each output vertex; the basis may depend on the classical
outcome of the previous measurements.

As it turns out, this model is universal for quantum computation - any traditional quantum
circuit can be simulated by a cluster state computation. We will demonstrate this in the next section,
along with some examples. A crucial point is that each of the intermediate sets of measurements is
classically controlled by the outcome of the preceeding one. Note also that, as measurement spoils
the qubits themselves, a portion of the initial cluster state is destroyed in the procedure, earning it
the name “one-way computer”.

3 The cluster state model of quantum computation

In this section, we will demonstrate the universality of the cluster-state model of quantum compu-
tation. Along the way, we will see detailed examples of the computation framework, and in the end
we will use these ideas to implement the Deutsch-Josza algorithm.

5



3.1 Universality of the Cluster State Model

To prove that the cluster state model is universal, it suffices to show that a set of gates which is
universal for the circuit model of quantum computing may be replicated by a set of corresponding
cluster states. One such universal set for the circuit model of quantum computation is given by the
Hadamard gate, the controlled-NOT gate, and the T gate [5], which is a one qubit gate that does
the following:

T (α |0〉+ β |1〉) = α |0〉+ eiπ/4β |1〉

We begin with the Hadamard gate H, and the following circuit, known more commonly as
one-qubit teleportation [6]:

|ψ〉 • H

|+〉 • XmH |ψ〉

(2)

Where m is the output of measuring the first qubit in the computation basis. Letting |ψ〉 =
α |0〉+ β |1〉 the state after the application of the Hadamard gate to the first qubit is

α |++〉+ β |−−〉

This can be re-written

1√
2

(α(|00〉+ |01〉+ |10〉+ |11〉) + β(|00〉 − |01〉 − |10〉+ |11〉))

=
1√
2

(|0〉 ⊗ (α |0〉+ α |1〉+ β |0〉 − β |1〉)) +
1√
2

(|1〉 ⊗ (α |0〉 − β |0〉+ α |1〉+ β |1〉))

=
1√
2

(|0〉 ⊗H |ψ〉+ |1〉 ⊗XH |ψ〉)

So the output of this circuit is indeed XmH |ψ〉. Thus, up to a known Pauli matrix, this circuit
applies H to the input qubit |ψ〉. While this example seems pedantic in the context of quantum
circuits (one can simply just apply the Hadamard gate directly to |ψ〉 in this case), it is useful in
the context of cluster-based quantum computation, as it is equivalent to the following cluster-state:

X (3)

Where |ψ〉 is the left qubit. This cluster state applies the cphase operation to both qubits to
entangle them, and then measures the first qubit in the X-eigenbasis. This cluster state is equiva-
lent to the one-bit teleportation circuit because the eigenstates for X are |+〉 and |−〉, which means
that measuring a state in the X-eigenbasis is equivalent to applying a Hadamard gate to that state
and then measuring it in the computational basis.

To implement the T gate as a cluster state, we can consider the following cluster state where
the leftmost qubit is our input qubit |ψ〉 and our rightmost qubit is our output:
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T−1XT X (4)

The key here is to note that the columns of the eigenbasis for T−1XT is given by HT ; thus, the
left two qubits in the cluster state represent the quantum circuit

|ψ〉 • H T

|+〉 • XmHT |ψ〉

(5)

Where m is 0 or 1 depending on the measurement of the first qubit. To prove that the output
of this circuit is as listed, suppose |ψ〉 = α |0〉 + β |1〉. Notice that after the cphase, Hadamard,
and T gates have been applied our qubits are in the state

1√
2

(|0〉 ⊗ (α |0〉+ α |1〉+ βeiπ/4 |0〉 − βeiπ/4 |1〉)) +
1√
2

(|1〉 ⊗ (α |0〉 − βeiπ/4 |0〉+ α |1〉+ βeiπ/4 |1〉))

=
1√
2

(|0〉 ⊗HT |ψ〉+ |1〉 ⊗XmHT |ψ〉),

based on the same equations as the one-qubit teleporation case. This output state XmHT |ψ〉
is then sent through the same quantum circuit as in (2), which gives us a final output state of
XnHXmHT |ψ〉 = XnZmT |ψ〉, where n is the measurement on the second qubit. Thus, up to a
known Pauli matrix, this cluster state implements the T gate.

The final gate that needs to be implemented in order to get a universal gate set for cluster-based
quantum computation is the controlled-NOT gate, also known as the cX gate. While 4-qubit and
15-qubit versions of controlled-NOT exist, depending on whether or not we require the control
qubit to also be teleported, this paper will focus on the minimal 4-qubit implementation found in
[7]. The cluster-state is as follows:

X X

input output

control

(6)
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For the analysis, suppose |ψ〉 = α |0〉 + β |1〉 is our input qubit and |φ〉 = γ |0〉 + δ |1〉 is our
control qubit. The cluster state is equivalent to the following circuit:

|ψ〉 • H

|+〉 • • H

|φ〉 • •

|+〉 •

(7)

We can process the cphase gate between the first and second qubits and the X-measurement
of the first qubit before doing anything else. By equation (2) this circuit then simplifies to

Xm1H |ψ〉 • H

|φ〉 • •

|+〉 •

Where m1 is the measurement outcome of the first qubit. We can write Xm1H |ψ〉 = (α ±
β) |0〉+(α∓β) |1〉, which means that the joint state of the system before any operations are applied
is

1√
2

((α± β) |0〉+ (α∓ β) |1〉)⊗ (|0〉+ |1〉)⊗ (γ |0〉+ δ |1〉)

After both CPHASE operations are applied we have the state

1√
2

((α± β)γ |000〉+ (α± β)δ |001〉+ (α± β)γ |010〉+ (α± β)δ |011〉

+ (α∓ β)γ |100〉 − (α∓ β)δ |101〉 − (α∓ β)γ |110〉+ (α∓ β)δ |111〉)

After the Hadamard gate is applied we have the state

1√
2

((α± β)γ |+00〉+ (α± β)δ |+01〉+ (α± β)γ |+10〉+ (α± β)δ |+11〉

+ (α∓ β)γ |−00〉 − (α∓ β)δ |−01〉 − (α∓ β)γ |−10〉+ (α∓ β)δ |−11〉)

=
1√
2

(αγ |000〉 ± βδ |001〉 ± βγ |010〉 + αδ |011〉 ± βγ |100〉 + αδ |101〉 + αγ |110〉 ± βδ |111〉)

If 0 is the result from measuring the top qubit we get the post-measurement state
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αγ |00〉 ± βδ |01〉 ± βγ |10〉+ αδ |11〉 = (α |0〉 ± β |1〉)⊗ γ |0〉+ (±β |0〉+ α |1〉)⊗ δ |1〉
= CNOT (Zm1 |ψ〉 , |φ〉)

Here the CNOT (|x〉 , |y〉) function is assumed to apply the NOT operation on |x〉 controlled on
|y〉. If 1 is the result form measuring the top qubit we get

±βγ |00〉+ αδ |01〉+ αγ |10〉 ± βδ |11〉) = (±β |0〉+ α |1〉)⊗ γ |0〉+ (α |0〉+±β |1〉)⊗ δ |1〉
= CNOT (XZm1 |ψ〉 , |φ〉)

Thus, if m2 is the value of the second measurement, the final output of this cluster after pro-
cessing all measurements is CNOT (Xm2Zm1 |ψ〉 , |φ〉). Thus, up to some known Pauli matrix, we
have implemented the controlled-NOT gate. This shows the universality of cluster-based quantum
computation.

3.2 A cluster-based implementation of the Deutsch-Josza algorithm

As an example of how to utilize the universal operations created in the previous section, we imple-
ment the Deutsch-Josza algorithm with cluster states. The Deutsch-Josza algorithm is a common
example used to illustrate cases where quantum computation performs exponentially better than
classical computation, which is capable of checking whether a given function f : {0, 1}n → {0, 1} is
constant or balanced (half the inputs evaluate to |0〉 and half the inputs evaluate to |1〉), assuming
the given function is either constant or balanced. In particular, this algorithm requires only one
call to an XOR oracle unitary function Uf , which acts on n+ 1 qubits and performs the operation
|x, b〉 → |x, b ∧ f(x)〉, where x is an n-length binary string and b is a single-length binary string.
The quantum circuit which implements the Deutsch-Josza algorithm is as follows:

|0〉⊗n / H⊗n

Uf

H⊗n

|1〉 H

The measurement will return |0〉⊗n if and only if the function is balanced; a full proof of this
fact can be found in [5]. To model such a circuit using a cluster state, we must find an appropriate
analogue to the XOR oracle in our cluster-based model. Just as we can assume the existence of a
quantum gate representing Uf in the circuit-based model due to the existence of a universal gate
set for quantum circuits, so too can we assume the existence of some cluster-state representing Uf .
Assuming such a state which takes in n+1 qubits as input and outputs n+1 qubits, we can consider
the following cluster state:
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...

...

Uf

...

...
...

...
...

T T T T

H

H (8)

The box in the above figure represents the XOR oracle in the cluster state model, taking in the
qubits in the left of the box as input and outputting the qubits in the right of the box. For brevity’s
sake, the double-circled nodes represent either the T operator or H operator in the cluster state
model, the details of which we covered in the previous subsection. The four T transformations to
the left of the oracle modifies the phase of the (n+1)st qubit, changing the initial |+〉 state to a |−〉
state. This ensures that |+〉⊗n⊗|−〉 is the input to the oracle, just as in the original circuit. Finally,
the first n output qubits have the Hadamard gate applied to them and are measured, remaining
consistent with the circuit.

4 Continuous Variable Cluster States

Preparing a cluster state with stationary qubits such as superconducting qubits and ion-trap qubts
is a technologically demanding endeavour due to the number of qubits needed for useful compu-
tation [8]. Instead, using qubits based on the degrees of freedom of photons is desirable due to
scalability [9]. It has been shown [3] that Bell-state measurements cannot be implemented deter-
ministically using linear optics for polarization entangled photons, motivating the current research
in entanglement between the phase quadrature of the modes of an EM field.

A quantum system is called continuous-variable (cv) when its Hilbert space is infinite dimen-
sional and its observables have continuous eigenspectra. The canonical example is the quantization
of an N-mode bosonic field, e.g. an electromagnetic field. The Hilbert space for the single mode
field is spanned by the Fock basis {|n〉}n∈N , where n described the number of photons existing
in each mode. These basis elements are eigenkets of the number operator n̂ = â†â where â†, â
are the creation and annihilation operators. They act on the basis as â† |n〉 =

√
n+ 1 |n+ 1〉 and

â |n〉 =
√
n |n− 1〉 and satisfy the commutation relation [â†, â] = 1. The system can also be de-

scribed by the phase quadrature operators {p̂, q̂} defined as q̂ = 1√
2
(â† + â) and p̂ = i√

2
(â† − â)

with corresponding eigenkets |q〉 and |p〉 respectively. We can now introduce some important CV
gates. Before starting, a good way to think of the new basis |q〉 , |p〉 is by associating them with the
computational basis and Hadamard basis respectively. Instead of switching between these two by
a Hadamard gate, a Fourier gate is used and is defined as
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F = exp

(
iπ

8
(q̂2 + p̂2)

)
(9)

In phase-space an arbitrary state can be described by its Wigner quasi-probability distribution
or Wigner function. For Gaussian states, eg coherent states, this is completely characterized but
the first and second statistical moments of the states. The first moment is defined as 〈x̂〉 where
x̂ = (q̂, p̂) and the second is the covariance matrix Vij = 1

2 〈{∆x̂i,∆x̂j}〉 where ∆x̂i = x̂i−〈x̂i〉 and
{} is the anti-commutator. For a Gaussian state the Wigner distribution is then defined by

W (x̂) =
1

2π det(V )
exp

(
−1

2
(x− 〈x〉)TV −1(x− 〈x〉)

)
(10)

For the vacuum state this is

W (p, q) =
1

2π
exp

(
−1

2
q2 − 1

2
p2

)
(11)

As the co-variance matrix is the identity and the p, q expectation values are zero which is just a
zero mean gaussain as should be expected. The Wigner distribution gives a nice way to describe
and visualize Gaussian states in phase-space and in the following description of computing one can
think of each of the squeezed states as a probability distribution in q, p space.

The cphase gate which has been shown to be fundamental for the generation of cluster states
is defined as

CZ = exp

[(
i

2

)
q̂1 ⊗ q̂2

]
(12)

In the Heisenberg picture this gate transforms the momentum quadratures as

p̂1 → p̂1 + q̂2 p̂2 → p̂2 + q̂1 (13)

While leaving the position quadratures unchanged. We also define the single mode squeezing
operator

S(ξ) = exp(ξ∗ââ− ξâ†â†) (14)

Which is used to generate the eignekets of the x̂ and p̂ operators from coherent beams. Details on
this are not included here for brevity and a detailed description can be found in [10]. In a similar
way to the earlier sections cluster states are then created by

1.) Preparing highly squeezed vacuum states to approximate momentum eigenstates |0〉p and
applying the CZ gates to connected qumodes.

2.) Performing single-mode measurements on qumodes to decide which basis later measurements
will be performed in.
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It is useful to introduce the nullifier formalism. Given some state |φ〉 the nullifier is the operator
H so that H |φ〉 = 0. For infinitely squeezed vacuum position and momentum eignestates the
nullifiers are then q̂, p̂ since

p̂ |0〉p = 0 q̂ |0〉q = 0 (15)

Similarly for EPR states the nullifiers are

n̂xEPR = q̂A − q̂B n̂pEPR = p̂A + p̂B (16)

Given the simplest possible cluster state of two squeezed momentum eignstates connected by a CZ
gate application using (13) the new nullfiers are then

δ̂1 = p̂1 − q̂2 δ̂2 = p̂2 − q̂1 (17)

The implementation of such cphase gates is challenging. One method is to use two single mode
squeezers, beam splitters, and Fourier gates to imitate CZ .[9][11] To see this we can generate an
EPR pair as a two-mode squeezed vacuum (TMSV) by interfering two orthogonally squeezed single
mode vacuum states at a 50/50 beam splitter.[12] The nullifiers of this are given by (16). Then we
can apply a Fourier gate to one of the modes, corresponding to a π

2 rotation in phase space i.e.

F †q̂F = p̂, F †p̂F = −q̂ (18)

Applying this to the first mode gives the nullifiers

δ̂1 = p̂1 − q̂2 δ̂2 = p̂2 − q̂1 (19)

Which is the same as the nullifiers obtained from the CZ gate. This then gives a way to physically
implement the CZ gate in continuous variables and so experimentally create cluster states. As has
been stated before to achieve universality two dimensional cluster states are necessary. The example
given above does not give an efficient method for creating 2D cluster states. One common method
for creating 2D cluster states that has been implemented recently is time-domain multiplexing.
[11][9][8] The idea behind this time domain multiplexing is to create a chain of two rails of entangled
modes, equivalent to applying CZ to two qumodes, Then by delaying one of the rails and entangling
the the new time-bin corresponding modes the state is curled up to form a 2D cylindrical array of
entangled modes.
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Figure 1: Experimental setup for time-domain multiplexed continuous variable cluster state gener-
ation reproduced from Ref [9]. Two Optical Parametric Oscillators (OPOs) generate the squeezed
states which are coupled into an optical fibre. The modes are then interfered at beam splitters to
create the entangled cylinder as shown above.

Once again, the nullifiers provide a complete description of the state however this time are
substantially more complex. They can be derived to be

δ̂qk = q̂Ak + q̂Bk − q̂Ak+1 − q̂Bk+1 − q̂Ak+N + q̂Bk+N − q̂Ak+N+1 + q̂Bk+N+1 (20)

δ̂pk = p̂Ak + p̂Bk + p̂Ak+1 + p̂Bk+1 − p̂Ak+N + p̂Bk+N + p̂Ak+N+1 − p̂Bk+N+1 (21)

Note this corresponds to the EPR nullifiers and not the nullifiers obtained from applying the CZ
although in a similar fashion to the simple case the CZ nullifiers can be obtained by applying Fourier
gates (π2 ) phase shifts to half of the modes which simply corresponds to a change in the measurement
basis. While it is difficult to see the relation exactly the significance is that entanglement is no
longer just between two modes but also between their time-bins as can be seen from the recursive
nature of (11) and (12) resulting in the 2D topology of the cluster state required for universality.

4.1 Finite Squeezing Induced Noise

In the above description the nodes of the cluster state have been assumed to be perfect momentum
eigenstates. That is they are infinitely squeezed. In practice this is un-physical and the finite amount
of squeezing leads to added noise and error to the system. For the process of gate teleportation, the
output state for some given input |ψ〉 =

∫
dq1ψ(q1) |q1〉 and ancillary state |0, Vs〉p (where Vs < 1

is the variance of the squeezed state) is

|ψ′〉 =MX(a)F |ψ〉 (22)

Where for the CV case we have replaced X by its CV equivalent and H be the Fourier gate. Note
instead of the computation basis and Hadamard basis the CV uses q̂ eigenstates and p̂ eignstates.
Here

M|ψ〉 ∝
∫
dqeq

2 Vs
2 |q〉 〈q|ψ〉 (23)

That is, the distortion is Gaussian with zero mean and variance 1
Vs

[13]. Since any circuit in the
cluster state model can be broken down into combinations of these types of circuits, each gate
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application introduces some Gaussian noise to the state.

In order to combat this and achieve fault tolerance, the use of error correcting codes is required.
One of the most standard ways to do this in the CV case is to encode one qubit per oscillator
using the GKP code, which protects against phase drift in the encoded qubits, as well as amplitude
decay.[14] Universality of quantum computing in the CV cases also requires the use of at least one
non-Gaussian operation such as photon number counting, which is popular due to the measurement
based nature of the cluster state model. Continuous-variable implementations of the cluster state
model with photonic qubits can achieve fault tolerance and universality. Photonic qumodes are
advantageous due to their relatively weak interaction with their surrounding environment and
room-temperature implementations. With current advancements in generating high quadrature
phase squeezing, this approach to quantum computing is becoming increasingly viable.[15]

5 Conclusion

We have introduced the basics of the cluster state model for measurement based quantum com-
putation in both the canonical way, and with a purely measurement based characterization. Its
equivalence to the normal model for quantum computation was shown. We then demonstrated the
universality of this model as well as an implementation of the Deutsch-Josza with the cluster state
model. A physical implementation of this model using continuous variables was then described and
some of the complexities involving fault tolerance given. The cluster state model of is interesting
model for computation due to its implementations that allow for scalability, universality, and fault
tolerance. Recent experimental advances have began to demonstrate these properties making it an
interesting area for research both theoretically, and experimentally.
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