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Abstract

A major obstacle in the practical realization of quantum computing is the noise introduced by
a real-world environment. The no-cloning theorem prevents the use of classical error correction
codes; therefore, the development of quantum error correction codes is a requirement for the
implementation of real-world quantum systems. Such codes spread the information in one
‘logical’ qubit among many physical qubits in such a way that noise can be measured and the
opposite transformation can be applied before measurement, restoring the original value.

In this paper, we explore cutting edge applications of stabilizer codes for quantum error
correction. We will begin with an review of error models and quantum error correcting codes,
along with a brief overview of the stabilizer formalism. Following this, we will introduce surface
codes, which are a subclass of stabilizer codes that embed physical qubits onto a surface and
encode logical states in global topological properties. Finally, we discuss some recent applications
of machine learning for optimizing surface codes.
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1 Introduction

We cannot clone, perforce; instead, we split
Coherence to protect it from that wrong
That would destroy our valued quantum bit
And make our computation take too long.

Correct a flip and phase - that will suffice.
If in our code another error’s bred,
We simply measure it, then God plays dice,
Collapsing it to X or Y or Zed.

We start with noisy seven, nine, or five
And end with perfect one. To better spot
Those flaws we must avoid, we first must strive
To find which ones commute and which do not.

With group and eigenstate, we’ve learned to fix
Your quantum errors with our quantum tricks.

Daniel Gottesman [9]

Noise and interference are inescapable when operating in the physical world. While this fact may be
familiar to physicists, most computer scientists choose to ignore noise in their theoretical models of
computing, instead opting for more elegant noise-free models. This poses issues for the translation
of these abstract models into real computers. The construction of useful physical computers, both
classical and quantum, is not possible without the development of safeguards that prevent noise from
destroying the result of a computation. Therefore, the development of error correction mechanisms
that make computation possible in the presence of noise with minimal overhead is crucial.

A number of physical systems are being explored for the implementation of quantum computing,
including ions, spins in semiconductors, and superconducting circuits. However, none of these
systems allow us to implement a proper computational qubit owing to their poor efficiency and
susceptibility to noise. To overcome the efficiency issues with noisy qubits, we use a collection of
physical qubits to build a logical qubit, which can be much more resilient than individual qubits.
Quantum error correction schemes aim to encode logical information in such a way that small errors
do not change the stored information.

In this paper, we survey the frontier of quantum error correction. We begin with a brief
introduction to basic quantum error correction techniques along with the stabilizer formalism in
Section 2. In Section 3 we motivate the use of topological codes for quantum error correction
before introducing the class of surface codes. Finally, in Section 4 we describe several state-of-the-
art applications of machine learning for optimizing surface code implementations.

2 Quantum error correction

Quantum error correction is necessarily different from classical error correction due to the unique
characteristics of qubits. Due to the no-cloning theorem, it is impossible to copy a qubit. Due to
the nature of quantum measurement, it is impossible to observe a qubit’s value without possibly
destroying some of its encoded quantum information, making it impossible to simply measure all
qubits and take the majority result. Finally, due to the 2n-dimensional nature of n-dimensional
quantum systems, errors can take the form of not only a ‘bit flip’ as in classical bitstrings, but
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any rotation in a 2n-dimensional complex Hilbert space [18], meaning there is an infinite number
of possible errors. Therefore, it is impossible to simply apply typical classical error correction
techniques to quantum states.

However, all hope is not lost. Shor [14] made a major breakthrough in quantum error correction
when they described how any arbitrary quantum error could be measured without destroying the
original quantum state. Extra qubits, called syndrome qubits, can be added to the system, and
then an operation can be applied such that these extra qubits represent the nature of the error
that perturbed the original quantum state. When the syndrome qubit is measured, the continuous
quantum error is projected onto a discrete basis. The syndrome measurement can then be used to
apply a unitary operation to the original qubit that reverses the error, restoring the system to its
error-free state.

Indeed, it can be shown that the ability to correct some set of quantum errors implies the
ability to correct any linear combination of these errors [8]. Hence, it suffices to correct some basis
of the error space. Typically, we consider the Pauli basis {I,X, Y, Z}. Since Y = iXZ is simply a
combination of an X error and a Z error, we do not specifically address the Y error when designing
a quantum error correcting scheme. Instead, we aim to correct just the Pauli X (bit flip) and Pauli
Z (phase flip) errors:

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
Shor’s 9-qubit code protects against both of errors on a single qubit, and therefore any type

of single qubit error. While Shor’s 9-qubit code is an important quantum error correction code,
it has weaknesses which make it unsuitable for real world general purpose quantum computation.
Its rate—ratio of logical to physical qubits—is fairly low, meaning that an enormous amount of
physical qubits are required for even a modest number of logical qubits. Since current quantum
computers have relatively few qubits, this is a major problem.

Effective codes generally have codewords that are “as different as possible”. This idea is formal-
ized with the distance of the code, which is the minimum weight of any operator that can transform
some codeword into a different codeword. The weight of an operator is the number of qubits on
which it acts nontrivially. For instance, the operator Z ⊗ I⊗7 ⊗ Z has weight 2, since it applies
the nontrivial Z operator at two locations. The 9-qubit code has distance 3 since, for example,
the operator Z1Z4Z7 (that is, the Z operator applied to the first, fourth, and seventh qubits) can
transform the logical |0̃〉 state into the logical |1̄〉 state. Shor’s 9-qubit code is just one example of
a larger class of quantum error correction codes called stabilizer codes.

2.1 The stabilizer formalism

A stabilizer code is a type of quantum error correction code where encoding and decoding circuits
can be implemented entirely using the Pauli gates I,X, Y, and Z. Most notable quantum error
correction codes are stabilizer codes. These codes have the useful property that every code state is
‘stabilized’ by the code’s ‘stabilizer group’. An operator U is said to stabilize a quantum state |ψ〉
if U |ψ〉 = |ψ〉. For example, I stabilizes all quantum states, while X stabilizes |+〉:

X |+〉 =
X |0〉+X |1〉√

2
=
|1〉+ |0〉√

2
= |+〉

A stabilizer code on n physical qubits is specified by its stabilizer group, which is a subgroup
S of the ‘Pauli group’ Pn = {I,X, Y, Z}⊗n, i.e. the group of all tensor products of Pauli matrices
[18]. Here we use a shorthand ABC... for the tensor product A⊗B⊗C⊗ ... of Pauli matrices. Such
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|0〉 H • • • H

Figure 1: An example circuit to measure three stabilizers P1, P2, P3 without destroying the encoded
quantum state. The last qubit is the syndrome qubit. [4]

a code can be compactly described by the ‘generators’ of S, i.e. the set of linearly independent
members of Pn where each element of S can be expressed as a product of these elements.

For example, consider the simple three-qubit repetition code, where a qubit |ψ〉 = α |0〉+ β |1〉
is encoded as α |000〉 + β |111〉. The stabilizer group of this code is S = {ZZI, ZIZ, IZZ, III}
[5]. It can easily be verified that a generator set of this group is {ZZI, ZIZ} because the other
two Pauli matrices can be obtained as a product of these. It can also easily be verified that any
member of the stabilizer group stabilizes any codeword; for example:

(ZZI)(α |000〉+ β |111〉) = α |000〉+ β(− |1〉 ⊗ − |1〉 ⊗ |1〉 = α |000〉+ β |111〉

The size of the stabilizer group is 2n, where n is the number of physical qubits. If the number
of logical qubits represented by the code is k and the number of stabilizer generators is m, then
m = n− k [4].

The principle behind stabilizer codes is that ‘correct’ codewords will be stabilized by the gen-
erators while non-codewords (produced by an error) will not be. Of course, an error which maps
from one codeword to another cannot be detected [18], but there exist many stabilizer codes which
can always correct the commonly used bit flip and phase shift errors. For example, Shor’s code can
be represented as a stabilizer code (Figure 2). It has been proven that the smallest stabilizer code
that can correct any single error is a five qubit code [10].

Error detection on a stabilizer code can be done by measuring the stabilizer generators using a
circuit like the one in Figure 1. The syndrome measurements can be used to apply error correction
operators to correct the qubit. Notice that there is not a one-to-one relationship between potential
errors and stabilizer measurements. Given any error E and a stabilizer S, the error SE will be
indistinguishable from E under the stabilizer code [4]. Thus, an algorithm is necessary to decide
which error correction operator to apply for any given stabilizer measurement. In fact, the general
case of decoding a stabilizer code is an NP-hard problem [12]. These algorithms are called ‘decoders’
and we will examine them more closely in later sections.

3 Topological codes

Stabilizer codes have been extended into more complex quantum error correction codes, like topo-
logical codes, which encode qubits in topology. Recall that the repetition code can be used to
protect a qubit from bit-flip errors. We have already seen that the repetition code is unsuitable to
correct general single-qubit errors, and in particular it is incapable of handling phase errors. For the
sake of demonstration, we present one additional scenario in which the repetition code fails: con-
sider the state |ψ〉 = 1√

2
(|0̃〉+ |1̃〉) = 1√

2
(|000〉+ |111〉) protected by the three-qubit repetition code.
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Z Z I I I I I I I
Z I Z I I I I I I
I I I Z Z I I I I
I I I Z I Z I I I
I I I I I I Z Z I
I I I I I I Z I Z
X X X X X X I I I
X X X I I I X X X


Figure 2: The generator set for Shor’s nine-qubit code in the stabilizer formalism [10]

Clearly, a projective measurement in the computational basis of any single physical qubit causes
|ψ〉 to collapse into either |0̃〉 = |000〉 or |1̃〉 = |111〉. That is, the superposition can be destroyed
by a single errant measurement (where a “measurement” could consist of a simple interaction with
the environment).

In Section 2.1 we observed that Shor’s nine-qubit code can be used to detect and correct an
arbitrary single-qubit error. We also discovered that the distance of Shor’s code is 3, meaning there
exists an error operator of weight 3 that transforms a code word into a different code word. We
can extend the idea of Shor’s code to obtain a family of codes:

|0̃〉 =
1√
2k

(
|0〉⊗k + |1〉⊗k

)⊗k
|1̃〉 =

1√
2k

(
|0〉⊗k − |1〉⊗k

)⊗k
Naturally, the distance of such a code is k. The code uses k2 physical qubits to represent a single

logical qubit, and hence its stabilizer has k2 − 1 generators. Notice that as k increases, the weight
of the stabilizer generators associated with phase parity checking also increases. For example, the
operator that determines the phase parity of the first two “bundles” of k qubits is the following:

M = X1 ⊗ . . .⊗X2k ⊗ I⊗k
2−2k

The weight of the operator M is 2k. Therefore, the number of qubits involved in a stabilizer
measurement increases as we increase the number of physical qubits in the code. This becomes an
issue if our error model allows individual qubit measurements to return incorrect values with small
probability; in this scenario, the probability that at least one measurement in a stabilizer generator
returns an incorrect value increases with the weight of the stabilizer. Owing to the large number
of qubits covered by the operator M (along with the other stabilizer generators that detect phase
errors), we say that the stabilizer measurements of this family of codes are non-local. However,
since we aim to address errors that occur locally (i.e. independently and on individual physical
qubits), we would prefer to develop a local code in which the weight of every stabilizer is bounded
above by a constant (relative to the code distance).

Our goal is to investigate a quantum error correcting code with the following constraints (as
suggested by Wootton [17] and Bombin [2]):

(1) The logical qubit depends on global properties of the code. That is, the logical qubit can not
be determined by the measurement of a single physical qubit,
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Figure 3: Implementation of a surface code [7].

(2) the distance of the code increases with the number of physical qubits, and

(3) the weight of a stabilizer operator is bounded above by a constant (as the number of physical
qubits grows).

The use of topological codes is immediately suggested by (1). Since topological properties are
inherently global, we can encode logical states in these properties. By embedding the system of
qubits onto a surface, we will show how (2) and (3) can be satisfied as well. In the following section
we introduce the surface code, an instructive example of a topological quantum error correcting
code.

3.1 Surface codes

Originally defined by Kitaev [11], the toric code is a two-dimensional lattice of physical qubits
which represents a pair of logical qubits. On an L× L square lattice, there are 2L2 edges and 2L2

physical qubits, with one physical qubit on each edge. Since the links of the square lattice are drawn
on a torus (equivalently, on a square with opposite edges identified), the codes are referred to as
toric codes. It was later discovered that the toroidal geometry was unnecessary and planar versions
(surface codes) were developed by Bravyi and Kitaev [3]. In this paper, we limit our discussion
to toroidal geometry. However, the ideas discussed canbe extended to any class of surface codes.
Surface codes are a subclass of stabilizer codes where information is encoded in homological degrees
of freedom [2]. For surface codes, nontrivial logical operators are tensor products of Pauli operators
along non-contractible paths of the torus (i.e. topologically nontrivial cycles).

Figure 3 (a) depicts an implementation of a surface code. The data qubits are white circles (◦)
and black circles (•) represent the syndrome qubits (also referred to as measure qubits). The storing
and manipulating of quantum information is done by data qubits and the syndrome qubits measure
the stabilizer operators for the system. Figure 3 (b) and (c) represent the sequence of operations
(geometric and quantum circuit) for measure-Z qubits and measure-X qubits, respectively. The
stabilizer generators of the surface code are the set of Z operators that surround each plaquette (or
cell) of the lattice, along with the set of X operators that surround each vertex of the lattice. These
are represented by the green and yellow crosses in Figure 3, respectively. The circuits in Figure 3
(b) and (c) are the equivalent circuits for the surface code illustrated in Figure 3 (a). Running the
circuit is equivalent to measuring the syndromes corresponding to that plaquette or vertex.
The codespace C is defined by the +1 eigenspace of the stabilizer generators. To determine if the
system is in the codespace, the stabilizers are measured repeatedly, forcing the physical qubits into
some eigenstate of the stabilizer. Thus, any vector |ψ〉 ∈ C if and only if S |ψ〉 = |ψ〉 for ∀S ∈ S,
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where S is the stabilizer. If any of the measurements results in the outcome associated with the
-1 eigenvalue of the stabilizer, then an error has occurred. Measuring each stabilizer generator
allows us to isolate any affected data qubits, since an X error on a single data qubit will result in
-1 outcomes on the pair of adjacent Z (i.e. plaquette) stabilizer generators. Similarly, a Z error
on a single data qubit will result in -1 outcomes on the pair of adjacent X (i.e. vertex) stabilizer
generators.

Beyond its ease-of-analysis, the surface code offers several practical advantages. First, it is
highly degenerate (that is, many code words represent the same logical qubit), and correction only
needs to be performed up to homology [2]. That is, when presented with a particular syndrome,
a decoder does not need to determine the exact error that produced it. Instead, a decoder only
needs to decide on the most-likely homology class to which the error string belongs (though this
is also a difficult problem, as we will see in Section 3.2). Second, the stabilizer generators of the
surface code are all local. That is, each plaquette/vertex stabilizer acts on a constant number of
spatially close qubits, regardless of the number of physical qubits in the system. However, there is
a tradeoff for these advantages: a logical qubit with a reasonably high error threshold (about 1%)
needs on the order of 103 to 104 physical qubits to represent it [7].

3.2 Decoding topological codes

The decoding problem can be roughly stated as follows: given a syndrome of a particular state
E |ψ〉 indicating that some error E has occurred, decide on an operator E′ such that E′E |ψ〉 = |ψ〉
(i.e. the operator E′E is a member of the stabilizer). As described earlier, the syndrome of the
surface code consists of the set of stabilizer measurements that return the outcome associated
with their −1 eigenspace. We will henceforth refer to such measurements as incorrect stabilizer
measurements. Any single physical qubit error in a surface code results in a pair of incorrect
stabilizer measurements. More generally, any string of physical qubit errors in the underlying
lattice results in a pair of incorrect stabilizer measurements at the endpoints of the string. We also
note that the product of any set of stabilizer generators results in a boundary of Pauli operators.
That is, any trivial cycle of Pauli operators on the surface code is a member of the stabilizer.
Therefore, given the endpoints of some error string E, the decoder aims to find an error string E′

that connects the endpoints of E, resulting in a cycle. Notice that there are many possible choices
for E′. Some of these choices will result in a nontrivial cycle, the application of which amounts to a
logical X or Z operation. In this circumstance, the decoder fails to correct the error E. Therefore,
in order to avoid accidentally introducing a logical X or Z operation, the decoder must decide
which error string E is most likely given the endpoints of E. The differences in error strings are
only significant up to homology; see Figure 4 for further explanation.

Given the endpoints of some error string, the optimal decoder determines the probability of
every equivalence class of the first homology group, and selects a correction string from the most
likely class. Precisely calculating the probability of each equivalence class is extremely inefficient
[4], so we cannot hope to use the optimal decoder in practice. Instead, the optimal decoder acts
as a theoretical upper bound on the performance of other decoding solutions. The probability
of each equivalence class depends on the chosen noise model. In the independent noise model, in
which each physical qubit suffers an X error with probability p and a Z error (independently) with
probability p. This model is popular in practice [4], since it allows one to perform analysis on
X and Z errors separately. The probability of a particular X (or Z) error string of weight m in
the independent noise model is pm(1− p)n−m, implying that short error strings are generally more
likely. Using this idea, the decoding problem admits an efficient and deterministic approximation
using the minimum weight perfect matching (MWPM) algorithm [6]. The depolarizing noise model
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Figure 4: Suppose that the error string displayed in (a) occurs. That is, a Z error is applied to the
two qubits highlighted in red. An incorrect stabilizer measurement is observed at the endpoints of
this string, represented by the two red crosses in the image. If the decoder chooses to apply the error
correction operator in (b) (i.e. the decoder applies Z operators to each of the qubits highlighted
in green), then the resulting product of Z operators is a member of the stabilizer. Indeed, if the
decoder chooses any string of correction operators that is homologically equivalent to the string
depicted in (b), then the error is corrected. However, if the string of corrections in (c) is applied,
then the resulting string of error operators comprises a nontrivial cycle on the surface. That is, the
resulting product of Z operators is not a member of the stabilizer, and the stored logical state is
corrupted.

introduces correlations between X and Z errors, and tends to be more difficult to analyze.

4 Machine learning for quantum error correction

While we have described the fundamentals of surface codes, we have left many important questions
unanswered that would prevent us from developing an efficient and effective surface code imple-
mentation. For instance, how many physical qubits should be used in practice? What can we gain
by using different lattice cellulations? How can we use objects with more homological degrees of
freedom to our advantage? None of these questions has a simple answer, which is a consequence of
the following unfortunate (but unsurprising) fact: the optimal set of parameters for the surface code
heavily depends on the error rate and model. Each of the above questions can be difficult to answer
analytically, so it seems natural to leverage machine learning to optimize surface codes for various
environments. We will focus on two promising applications of machine learning for the surface
code. First, we will examine decoding strategies that are facilitated by machine learning. Second,
we will examine how reinforcement learning techniques can be used to optimize the structure of a
surface code.

4.1 Learning decoding agents

As discussed in Section 3.2, decoding is not trivial. While MWPM provides a baseline, it is not
an effective decoding strategy for correlated noise models. Finding efficient decoding algorithms
for more complex error models is an active area of study. Machine learning can discover structure
without explicit instruction, and has already produced some promising results in this field.
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Figure 5: Architecture of the neural network used for syndrome classification (reproduced from
Krastanov et al. [12])

4.1.1 Neural networks

Decoding a stabilizer code can be trivially reformulated as a classification task. Syndrome mea-
surements are the input, which must be classified as errors. An ideal decoder will classify every
syndrome measurement as the physical error that produced it. Krastanov et al. [12] use a fully-
connected neural network to solve this classification task. Their network has a simple structure,
with the input layer being the measured syndrome for each stabilizer operator, a small number of
hidden layers, and an output layer representing the likelihoods of each type of error (see Figure 5).

The network is trained on pairs of errors and syndromes obtained by randomly generating errors
and obtaining the corresponding syndrome using a quantum depolarization model, with the size
and number of hidden layers determined by hyperparameter search. The trained neural network is
used to decode by evaluating it forwards given a syndrome measurement as an input. The result
is a vector of real numbers, which can be viewed as a probability distribution over possible errors.

Krastanov et al. test their approach on the toric code, because it has structure the neural
network can take advantage of. They find that this algorithm significantly outperforms MWPM,
suggesting that there exists hidden structure in the probability distribution over errors that a neural
network is able to take advantage of. While Krastanov et al.’s approach is simple, it requires few
explicit assumptions about the quantum computer it operates on, as the machine learning algorithm
infers any structure during training—making it applicable to any stabilizer code.

4.1.2 Reinforcement learning

The decoding problem also admits a simple reformulation as a reinforcement learning problem [1,
13, 16]. We can imagine an agent whose goal is to preserve some logical quantum state. The
agent can achieve this by applying correction operators to the physical qubits. Naturally, the agent
succeeds as long as the initial logical quantum state is preserved by the physical corrections. The
agent fails when it mistakenly applies a set of corrections that result in some erroneous logical
operation. This simple framework offers significant flexibility (i.e. reward schemes, exploration,
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and actions that can be taken by the agent are all independent of the framework), and in this
section we will provide a brief overview of two recent projects in this domain.

Sweke et al. [16] describe a reinforcement learning scheme that is agnostic to the stabilizer
code used, but they use a surface code as a concrete example. Formally, the authors translate
the problem of achieving fault-tolerant quantum computation using a stabilizer code into a finite
Markov decision process [15], which defines a sequence of interactions between an agent and its
environment. At each discrete time step in such a process, the agent is presented with a state (from
some finite set of states) along with a finite set of actions that may be performed in that state.
The agent chooses one of these actions, which results in a reward. Afterwards, the environment
enters a new state and the agent is presented with its next available set of actions, marking the
beginning of a new time step. Given an agent that follows some policy π, the action-value function
(or q-function) for π maps state/action pairs (s, a) to the expected value generated by policy π
given that action a is selected in state s. That is, if qπ(s, a) is the action-value function for some
policy π, then

qπ(s, a) = Eπ
(
Gt : St = s,At = a

)
,

where St represents the state of the environment at time t, At represents the action chosen by the
agent at time t, and Gt is some discounted cumulative reward function. That is, Gt represents the
cumulative reward obtained by policy π from time t, where the reward obtained at step i > t is
scaled by γ(i−t), for some γ ∈ [0, 1]. Effectively, the parameter γ encourages the agent to prioritize
immediate returns when it is close to 0, and allows the agent to prioritize future rewards when it
is close to 1. While the definition of the action-value function is quite natural, finding the optimal
action-value function can be challenging in practice, especially if the state and actions spaces are
large. To overcome this barrier, Sweke et al. [16] use a class of neural networks to estimate the
optimal action-value function.

Using this basic framework for reinforcement learning, Sweke et al. [16] define a class of decoding
agents, which can learn effective decoding schemes for the surface code. The action space for the
decoding agents consists of the set of all Pauli X and Z operators on each physical qubit in the code,
while the state space consists of every possible set of stabilizer measurements (i.e. every possible
syndrome). The environment consists of an initial logical state, a hidden state that contains a list
of errors that have occurred, and a referee decoder. Training of the decoding agent progresses in
a sequence of episodes. An episode begins by resetting the environment (i.e. a new initial state
logical state and hidden state is generated). The agent is then provided with the syndrome of the
initial hidden state. Note that each stabilizer measurement also has a small possibility of returning
the incorrect value, so this may not be the true syndrome of the current hidden state. Given this
information, the agent decides to either

(a) apply a Pauli correction operator to a single physical qubit, or

(b) request a new syndrome measurement from the environment.

In case (a) the chosen Pauli operator is applied to the hidden state. If the resulting state is equal
to the initial logical state, then the agent is given a reward of 1 scaled by the discount factor.
Otherwise, the agent is given a reward of 0. Afterwards, the referee decoder is given the true
syndrome of the hidden state; if the referee is incapable of retrieving the initial logical state from
the hidden state, then the logical state has been lost and the episode ends. In case (b) a new set of
errors is applied to the hidden state according to some error model, and then the agent is provided
with a (possibly faulty) syndrome of the new hidden state. Since an episode ends only when the
stored logical state is lost, an effective decoding agent will induce relatively long episodes. Sweke
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(a) (b)

Figure 6: Illustrations of lattice adaptations. Blue dots represent data qubits, black and grey dots
represent syndrome qubits. X and Z-type stabilizers are represented by lines connecting blue dots
with plaquettes or vertices respectively. (a) The chosen vertices (red dots) are connected across a
plaquette, which is split into two. (b) Red dots correspond to two plaquettes which are connected
across a vertex. The vertex is split into two by a new edge . In both cases the number of data
qubits (blue dots) is increased by one [13].

et al. [16] used their training framework to generate decoding agents that significantly extend
the lifetime of logical 1-qubit states (relative to an unencoded single qubit) using the surface code.
Their experiments considered not only the independent noise model, but also the depolarizing noise
model. In the independent noise model (resp. depolarizing noise model), the generated decoding
agents were capable of extending the lifetime of a single qubit as long as the error rate did not
exceed approximately 0.13% (resp. 0.11%). Interestingly, these promising results were obtained
using a surface code with a modest distance of d = 5.

4.2 Adaptable surface codes

Efficiently correcting arbitrary noise is a complex optimization problem. The difficulty of this
task can be attributed by the diversity of environmental noise: the noise may not be independent
and identically distributed, may be highly correlated, or may be completely unknown in realistic
settings. As we saw in Section 4.1, efficient decoding is central to any fault-tolerant [16] quantum
computing system. However, since decoders are dependent on the underlying code structure, only
a limited improvement is possible by optimizing the decoding procedure. In this section, we explore
the benefits of changing the structure of the quantum memory, both before and during computation.
This is achieved through reinforcement learning and adaptive surface codes.

In Section 3.1, we discussed surface codes defined on a square lattice. However, this is not a
requirement; surface codes can be defined on arbitrary lattices, which can change the performance
of the code. This flexibility allows us to fine-tune our surface codes for biased noise models. We
refer to these codes as adaptable surface codes [13].

The basic moves depicted in Figure 6 can be implemented fault-tolerantly and map a surface
code to another while changing the underlying stabilizer group [13]. These adaptations or code
deformations let us edit the error correction mechanism on the fly and thus enable us to more
effectively combat arbitrary noise. If the optimization procedure is performed on a real quantum
computer, then we assume that the device has the capacity to perform the basic code deformations
depicted in Figure 6 efficiently. Nautrup et al. claim that these deformations are designed with the
constraints of a physical device in mind [13].
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Figure 7: Illustration of a two-layered clip network of a PS agent. Surface codes are represented as
percept clips in the upper layer. Code deformations are represented as actions in lower layer. Each
edge has an associated weight according to its transition probability. In the illustration, given a
percept s2 the agent decides to take action a3. This results in a new surface code s4 which is added
to the set of percept clips [13].

4.2.1 Optimizing adaptable surface codes

In the scheme proposed by Nautrup et al.[13], a Projective Simulation (PS) reinforcement learning
agent interacts with the environment and modifies the given quantum error correcting code based
on feedback. First, the agent is trained in a simulated environment under various scenarios: i.i.d.
error channels, correlated error channels, and changing error threshold requirements. Interestingly,
it has been shown that the resulting agents have the ability to transfer their learning experience to
different scenarios (transfer learning). Thus, the agent does not need to be trained from scratch
when its environment or threshold requirement changes. Each trial is initialized with a distance 3
surface code Λ consisting of 18 qubits embedded on a square lattice. The code is then subjected
to an unknown Pauli noise channel which may change over time and can differ across qubits.

The core component of a PS agent is its clip network which comprises of episodic memory
called clips. The agent receives information about the environment through activation of percept
clip, si ∈ P , which is information about the current state of the code. The agent can perform
certain actions as action clips, ai ∈ A and add up to 50 additional qubits to reduce the logical error
rate below a threshold.

Figure 7 presents an illustrative two-layer clip network. In this network each percept, si ∈
P, i ∈ N (t) (where N (t) is the number of percepts available at time t) is connected to a action clip,
s1 ∈ A, j ∈ [1,Mi] (Mi is the set of actions available for a si) via an edge which represents the
transition probability of taking an action ai based on percept si, pij := p(ai|si). As the the agent
learns, the clip network is adapted by creating new clips and updating transition probabilities.
When a new percept is encountered by performing a particular action, it is added to P . The
agent’s goal is to use the basic code deformations depicted in Figure 6 to achieve a given target
logical error threshold. If the agent is capable of reaching this threshold with no more than 50
additional qubits, it is given a reward of 1. Otherwise, the agent is given a reward of 0. After the
agent is rewarded, the trial ends and the surface code is reset to Λ. As before, the agent’s objective
is to maximize its expected reward.

The fact that agents can transfer their learning experiences between environments allows us
to bootstrap agents on (relatively) cheap classical simulation hardware, before using these trained
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agents on real quantum computers. In a new environment, by employing exploration and exploita-
tion the agent can figure out a strategy to adapt a sub-optimal code to achieve the desired error
rate. Additionally, the method makes no assumptions about the environment and the agents receive
no information about the noise model. Offline classical simulations of surface code optimization are
much faster and cheaper than running such an optimization procedure on a noisy small-scale quan-
tum computer. Hence, transfer learning offers a significant performance advantage for near-term
quantum computing devices.

5 Conclusion

Quantum error correcting codes are a fundamental step towards the realization of fault-tolerant
quantum computing. It is convenient to express quantum error correcting codes in the stabilizer
formalism, as stabilizer codes are relatively simple to analyze. A particularly promising subclass
of stabilizer codes are the so-called surface codes, which are constructed by embedding physical
qubits onto the edges of a lattice that is itself embedded onto some surface. Logical states are
encoded in global topological properties of the surface. Surface codes are desirable because their
stabilizers are local. That is, every stabilizer generator of a surface code acts on only a constant
number of qubits, and each physical qubit is acted upon by only a constant number of generators.
Decoding a surface code is nontrivial, since a syndrome only reveals the endpoints of error strings
on the surface. Therefore, a decoder must decide which homology class the error belongs to, before
applying a correction operator from this same class.

We investigated several applications of machine learning regarding the surface code. The de-
coding problem can be translated into a classification task and fed through a neural network.
Krastanov et al. [12] demonstrated that neural networks are capable of effectively choosing error
correction operators on the surface code, outperforming deterministic approaches in the depolar-
izing noise model. This approach is generalized by Sweke et al. [16], who describe a framework
for generating decoding agents that extend the lifetime of logical qubit states. Finally, Nautrup
et al. demonstrate a technique for optimizing the structure of the surface code itself, which could
be used to improve the performance of the surface code in different error models. With the large
number of parameters required to describe a particular surface code, the variety of machine learning
techniques being applied to this class of codes is unsurprising. We observed how machine learning
can be used to develop decoding schemes, and how it can be used to find optimal surface code
structures; a natural next step would be to investigate how these approaches work in tandem.
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