
Quantum Neurons: analyzing the building blocks of
quantum deep learning algorithms

Zachary Cetinic, Daniel Hidru, Marta Skreta

December 7, 2019

1 Abstract

The massive computational power of modern computers and large volume of data generated
in recent years has resulted in a surge of deep learning algorithms that have demonstrated
success in a variety of tasks, from classification and segmentation to generative modelling.
As the amount of data grows and the number of transistors in silicon chips approaches the
physical limit, solutions are needed to speed up deep learning algorithms and reduce their
resource consumption. Quantum computation is an attractive solution as it has been shown
to speed up algorithms in related fields. In this paper we analyze the field of quantum
neurons, the building blocks of deep learning networks. We note that developing a quantum
neuron is a challenging task since classical neurons require procedures that are difficult
to simulate with quantum algorithms. We found that while quantum neurons have been
proposed to simulate classical neurons, they often pose no advantage in terms of runtime
over classical algorithms for a single input vector, but may provide a benefit when data is
trained in superposition. We also found that there is potential in the ability of quantum
neurons to reduce the runtime of learning network parameters; however, it is too soon to tell
whether it these algorithms will be beneficial in practice.

2 Introduction

In recent years, both machine learning (ML) and quantum computing have, each in their own
right, attracted a significant amount of attention in research and media outlets. Quantum
machine learning is the marriage of these two domains: it concerns the use of quantum
algorithms to achieve significant speedups of machine learning algorithms compared to their
classical counterparts [1]. The paradigm of quantum machine learning has been to replace
classical subroutines with a faster quantum equivalent. This gave rise to algorithms such as
the HHL algorithm (named after its inventors: Harrow, Hassidim, and Lloyd), which can
solve linear equations faster on a quantum computer than on a classical one [2], and quantum
support vector machines, which can learn to classify data with an exponential speedup over

1

classical algorithms [3]. However, these algorithms aren’t perfect: oftentimes, they require
assumptions to be made about the dataset that may or may not hold in practice, and they
might not return the algorithm output in a form that is useful to the user [4].

Deep learning algorithms constitute a class of ML algorithms that have experienced a
boom in popularity over the last 7 years due to their ability to learn nontrivial patterns
in complex and high-dimensional data [5]. While papers describing a quantum-style neural
network have been proposed since the 1990s, progress in the development of a quantum neural
network has been slow and has not reached a level of maturity as other sectors of quantum
machine learning [6]. Reasons for this may include the difficulty of mapping deep learning
algorithms, which are sequential and nonlinear, into the linear and parallel framework of
quantum mechanics. Perhaps the single greatest challenge to developing a quantum neural
network is the difficulty of implementing nonlinear activation functions in quantum neurons,
the quantum equivalent of classical neurons in classical neural networks. In this section, we
analyze the current state of quantum neurons and outline challenges currently hindering this
field from progressing.

In this paper, we focus on recent developments in quantum neuron architecture. Neurons
are the fundamental building blocks of deep neural networks. Any speedup obtained at the
neuron level has the potential to have a significant impact in the runtime of the overall
algorithm. We begin this paper with an overview of classical deep learning and neurons. We
then provide an overview of the current quantum neuron literature, analyzing the pros and
cons of each method compared to their classical counterpart. Finally, we end with a section
on how quantum neurons are implemented in practice and the difficulties that accompany
running these algorithms on a quantum computer.

3 Deep Learning

Deep learning is a class of machine learning algorithms that extracts features from an input
and maps them to an output using an artificial neural network (ANN) [5]. While ANNs
make up a diverse set of models, their unifying factor is that they are composed of multiple
linear operations joined together with nonlinear transformations, which are called activation
functions. Examples of commonly used nonlinear transformations are the sigmoid function
(f(x) = 1

1+e−x
) and ReLU function (f(x) = max(0, x)) [7]. These non-linearities are an

integral part in the ability of an ANN to be a universal function approximator [8, 9]. The
term “deep” is used to signify multiple linear and nonlinear layers joined together to form a
single network.

Deep learning algorithms are used to solve diverse problems, such as classification, re-
gression, segmentation, and generative modelling. They are used in a diverse set of fields,
such as healthcare, finance, and chemistry [5]. The deep neural network boom of the last
7 years was catalyzed by the development of AlexNet, a deep convolutional neural network
trained on millions of images to predict 1000 different categories [10].

Every year computers are becoming increasingly more powerful, allowing them to easily
process very large datasets and learn billions of features that represent subtle and complex

2

patterns that would be otherwise difficult to identify. These computers are even capable of
beating human experts in some cases [11]. To allow for even greater computational power,
specialized architectures are being implemented specifically for deep learning. The latest
Nvidia graphical processing units (GPU) include specialized tensor cores for deep learning
problems [12]. Moreover, Google announced the tensor processing unit (TPU), a circuit
created specifically to speed up artificial intelligence applications [13].

However, as the size of datasets increases and as the number of transistors per classical
circuit approaches its limit, other hardware-based solutions will be needed [6]. This is why
there exists an effort to develop quantum versions of machine learning algorithms for quan-
tum computers. Progress in this direction requires the development of efficient quantum
algorithms that can be used to implement quantum neural networks. For quantum neural
networks to be useful, they need to provide some advantage over classical neural networks,
whether it be time reduction, storage reduction, or superior pattern recognition.

4 Classical Neurons

The fundamental building block of an ANN is a neuron. In its simplest form, a neuron takes
in an N -dimensional input vector ~x, combines it linearly with a weight vector ~w using the
dot product and adds a bias b. This results in an intermediate value θ that is passed into
an activation function a, such as a sigmoid or ReLU function, to introduce a nonlinearity.
(Fig. 1) The output of the neuron is:

y = a(θ) = a(~x · ~w + b) (1)

The output y can either be fed as a learned input into another layer of neurons in a deep
network or be interpreted as the prediction of the network for a given input. The goal of
training a neuron is to learn weights that maximize the probability that the final neuron in
the network will produce the correct output for a given input. During training, weights are
tweaked to maximize this probability using sequential algorithms such as backpropagation
[14].

5 Quantum Deep Learning Building Blocks

5.1 Quantum Perceptrons

One of the earliest examples of a neuron was the perceptron, first described in the 1950s
by Rosenblatt [15]. Perceptrons use the step-activation function as the nonlinearity, which
returns an output y such that:

y =

{
1 if ~w · ~x+ b ≥ 0

−1 otherwise

3

Figure 1: Schematic showing classical neuron. An N -dimensional input ~x is linearly com-
bined with an N -dimensional weight vector ~w and a bias term b. The resulting dot product,
θ, is passed though an activation function to introduce a nonlinearity, a(θ), to produce the
output, y.

Schuld et al. proposed a quantum perceptron imitating the step-activation function using
the phase estimation algorithm (Fig. 2) [16]. The entries of the input ~x are restricted to have
binary values xk ∈ {−1, 1} so the input can be encoded in the state |Ψ~x〉 = |x0, ..., xN−1〉,
where entries of -1 are represented by a quantum state of 0. The input state is passed into
the circuit along with ancilla qubits, |0〉⊗τ , where τ is the precision of the phase estimation
algorithm. A Hadamard gate is applied to each of the ancilla qubits. The resulting state is
1√
2τ

∑2τ−1
j=0 |j〉|Ψ~x〉.

The weights of the model ~w are constrained to be continuous values wk ∈ [−1, 1). The
weights are encoded in the unitary U~w, which is then applied to the input conditioned on
the ancilla qubits. U~w can be decomposed into a product of unitaries: U~w = UwN−1

...Uw0U0,
where Uwk is the unitary applied to xk. U0 is a global phase shift of πi and each Uwk has the
form:

Uwk =

[
e−2πi

wk
2N 0

0 e2πi
wk
2N

]
After applying U~x in the circuit, the ancilla qubits will have the state 1√

2τ

∑2τ−1
j=0 e2πijφ|j〉,

where φ = ~x·~w
2N

+ 0.5. Since xk ∈ {−1, 1} and wk ∈ [−1, 1), the dot product ~x · ~w ∈ [−N,N]
and φ ∈ [0, 1]. Therefore, φ is in the correct range so that it may be extracted using the
phase estimation algorithm. If a single bit of precision is used to extract the value of φ, then
φ1 = 1~x·~w

2N
≥0 and the result may be used to generate the output of the model:

y =

{
1 if ~w·~x

2N
≥ 0

−1 otherwise

4

Figure 2: Phase estimation algorithm used to implement a quantum perceptron. The dot
product of ~x and ~w is stored in the eigenvalue of the qubit state. Inverse QFT is used
to extract the dot product (φ); the output becomes 1 if it is above the threshold and -1
otherwise. Figure taken from [16].

While Schuld et al. comment on classical methods to train neurons and potential quantum
methods, they don’t provide a learning method that is specific to their perceptron.

Since only one bit of precision of required for the threshold function, only two gates are
needed in the phase estimation algorithm. However, this may become problematic for an
increasing input dimension, N . For example, given a data-set that is a uniform random
distribution in [-1, 1), the majority of points in the output distribution are centered at 1

2
.

Greater precision around the mean is required, and so the value of τ must increase. Specifi-
cally, Schuld et al. found that the circuit should be applied a number of times proportional to
O(log

√
N) [16]. To implement QFT−1, the number of gates that are required is τ(τ+1)

2
+ 3 τ

2
,

which is O(log2
√
N) [17]. To implement the neuron on a quantum computer using this al-

gorithm, O(N log2
√
N) = O(N log(N)) time is required, whereas an upper bound of O(N)

time is required to implement the classical equivalent. Thus, this neuron does not pose any
advantage from a time perspective since it requires more resources than its classical equiva-
lent for a single input. However, the paper claims that the training data can be represented
in a superposition and so the circuit needs to be called only once. Thus, this algorithm
may provide a global benefit in terms of reducing the overall runtime since all the data can
be processed in one step, even though that step is longer than a single step on a classical
computer, where we would need to run the algorithm on multiple batches of the data.

Quantum computing may also be used to train perceptron models faster than classical
algorithms. Rather than define a new way to compute a perceptron model in a quantum
computer, Kapoor et al. developed two quantum algorithms for perceptron learning that
provided improvements in the computational and statistical complexity in the scenario where
they have access to an oracle that computes the output of the perceptron [1]. One of the
algorithms achieves these improvements by utilizing the parallelism of quantum computation
to identify which training samples are misclassified and need to be used by the model to
update its weights. Given a set of S training examples and a function which computes the
misclassification of an training example, Grover’s search algorithm may be used to identify
a training example which has been misclassified in O(

√
S). The author’s were able utilize

this speed up to create a quantum algorithm that resulted in a
√
S reduction in the number

of training examples required to learn a perceptron with a sufficiently small error over the

5

classical perceptron algorithm. This algorithm also does not follow the paradigm of classical
machine learning algorithms, as classical machine learning algorithms update weights by
measuring their gradient with respect to every training example, which takes O(S) time.
Instead, it only looks for samples that were misclassified. While this algorithm reduces the
number of training examples required for the computation, techniques like this that constrain
quantum methods to mimic traditional machine learning methods might be slowing down
the progress of quantum machine learning, as the full potential of quantum algorithms has
not yet been exploited for this task.

5.2 Quantum Neurons

A number of works have outlined the simulation of artificial neurons jointly using both
classical and quantum algorithms. A notable recent contribution in this area is by Tacchino
et al., who demonstrated that an artificial neuron able to analyze patterns in binary images
can be implemented on a real quantum computer: one of IBM’s quantum processors [18].
The input to their algorithm is a N = 2q vector ~x ∈ {−1, 1}N , which is mapped to the
following wave function:

|Ψ~x〉 =
1√
N

N−1∑
j=0

xj|j〉 (2)

where N is the dimension of the input string, xj is the value of the j-th input, and |j〉
represents the states |j〉 ∈ {|00...00〉, |00...01〉, ..., |11...11〉} that form the basis vectors for q
qubits. Due to implementation difficulties, they were only able to simulate q = 2 qubits on
the quantum compute. The benefit of this is that it allows the dynamics of the system to
be controlled more robustly on account of lower error rates [18, 19]. Similarly, the weight
vector ~w ∈ {−1, 1}N is mapped to the state

|Ψ~w〉 =
1√
N

N−1∑
j=0

wj|j〉 (3)

The next step involves computing the inner product between ~w and ~x. First, a unitary
matrix Uw rotates |Ψ~w〉 to the |11...11〉 axis, i.e. Uw|Ψ~w〉 = |1〉⊗q = |N − 1〉. Subsequently
applying Uw to |Ψ~x〉 corresponds to the projection of the vector Uw|Ψ~x〉 over the |11...11〉
axis. It follows that the dot product between the two quantum states is

〈Ψ~w|Ψ~x〉 = 〈Ψ~w|UwU †w|Ψ~x〉
= 〈N − 1|φx,w〉
= cN−1

(4)

where cN−1 is the coefficient of the last state of |φx,w〉 and |φx,w〉 = U †w|Ψ~x〉. To compute
the dot product between ~x and ~w, equations 2 and 3 are combined such that:

6

〈Ψ~w|Ψ~x〉 = (
1√
N

N−1∑
j=0

xj〈j|)(
1√
N

N−1∑
j=0

wj|j〉)

=
1

N

N−1∑
j=0

xjwj〈j|j〉

=
1

N

N−1∑
j=0

xjwj

=
1

N
~w · ~x

(5)

Thus, we have that the dot product ~w · ~x = N〈Ψ~w|Ψ~x〉. Since 〈Ψ~w|Ψ~x〉 = cN−1, the nor-
malized dot-product can be extracted from the last state of |φx,w〉. This can be implemented
in a circuit using an ancilla qubit and a multi-controlled NOT gate that changes the state of
the ancilla qubit depending on the state of the qubit (Fig. 3). Specifically, this will only flip
the ancilla qubit to the state |1〉 for the final state of |φx,w〉, which is where cN−1 is stored.
After the multi-controlled NOT gate is applied, the state of the system is:

|φx,w〉|0〉 →
N−2∑
j=0

cj|j〉|0〉+ cN−1|N − 1〉|1〉

The nonlinearity is applied by measuring the ancilla qubit. This will cause the qubit to
collapse to |1〉 with probability |cN−1|2. Therefore, the output of the system is probabilistic
with P (y = 1) = (~w·~x

N
)2. The value of this probability can also be estimated by sampling

the output multiple times and calculating the frequency of y = 1. We note that there is a
potential downside to this method during the learning process. Suppose the ground truth
label is 0, but the algorithm predicts the coefficient is more than 0.5 and misclassifies it
as 1. To update the weight parameters for the next iteration, the algorithm employed by
Tacchino et al. searches for instances where ~w and ~x, which caused the inner product to
increase. However, to reduce the probability that the algorithm outputs 1, they want the
inner product to decrease. Thus, they find the subset where they coincide and randomly flip
some proportion of bits in ~w. The issue in this problem arises when a very large subset of
~w and ~x don’t coincide, since the inner product is a large negative value and consequently
the square of the inner product is a large positive value. Now, when the algorithm searches
for places where they do coincide, very few values coincide. Flipping any ~w thus makes the
inner product more negative, which makes the square more positive and so the probability
of output being 1 is higher, which is the opposite of what should happen.

An overview of the circuit can be viewed in Figure 3. While they were successfully able
to implement their model in an IBM processor to classify patterns, the time it took for
the algorithm to run was linear in the dimension of the input vector, which is the same as
classical models. Thus, there is no time advantage of their model over what currently exists.

7

Figure 3: Circuit used by Tacchino et al. to implement a quantum neuron. The dot product
between ~w and ~x is computed and stored as the coefficient cN−1 of the last qubit of the input.
This information is trasnferred to an ancilla qubit using a multi-controlled CNOT gate. The
ancilla qubit is then measured; it collapses to |1〉 with probability proportional to cN−1 and
|0〉 otherwise. The act of measuring simulates the nonlinearty. Figure adapted from [18].

The authors do, however, gain an advantage over classical methods in terms of parameter
storage during training by encoding their data in an exponentially smaller number of qubits.
Note that during when saving the model to memory this advantage would disappear since
the space required to store the weights is linear; however, if memory was a bottleneck during
training (for example, all parameters couldn’t fit into qRAM), this method would provide
an advantage.

Cao et al. took the quantum neuron one step further by enabling it to simulate a sigmoid
function while processing inputs in quantum superposition [20]. Their algorithm encodes an
input ~x ∈ {0, 1}N in the quantum state |Ψ~x〉 = |x1...xn〉 and use a Pauli Y operator is used
to rotate each input qubit proportionally by the weights and bias. The operator has the
form

Ry(a
π

2
+
π

2
)|0〉 = cos(a

π

4
+
π

4
)|0〉+ sin(a

π

4
+
π

4
)|1〉

where a ∈ [−1, 1] and Ry(t) = e−itY/2. The operator rotates a qubit by the angle t around

the Y axis, where Y =

[
0 −i
i 0

]
. To apply the weights and bias onto the inputs, each input

qubit |xi〉 is rotated by the gates Ry(2wi) and Ry(2b). Note that the weights and bias are
multiplied by a factor of 2 to cancel out the factor 1/2 in the operator. This is equivalent
to applying a gate Ry(2θ) on an ancilla qubit conditioned on the input |Ψ~x〉. The ancilla
qubit is then rotated by a gate corresponding to the activation function, Ry(2q(θ)), where
θ = w1x1 + ...+ wnxn + b and q is a nonlinear function q(θ) = arctan(tan2θ) that maps the
input to a value between 0 and π

2
. These gates are implemented using a repeat-until-success

(RUS) circuit, which works as follows: the operator Ry(2q(θ)) is applied to an ancilla qubit
conditioned on the input |Ψ~x〉. The ancilla qubit is then measured. If it is in state |0〉, the
output qubit is close to Ry(π)|0〉 = |1〉, which is the right state. If it measures |1〉, the output
qubit has been rotated by Ry(π/2) by the circuit, and so the qubit is rotated by Ry(−π/2)

8

to undo this rotation. This circuit is applied k times until the ancilla qubit is measured to
be |0〉, which indicates that the output qubit is in state Ry(0)|0〉 = |0〉. Equivalently, this
process can be thought of rotating the angle θ closer to 0 or π/2 depending on whether its
less than or greater than the threshold, π/4, which simulates the sigmoid function. The
closer θ is to the threshold, the more times the circuit needs to be applied. The number of
iterations required to rotate θ to be within a distance ε of 0 or π/2 is k = O(log 1

δε
), where δ

is the distance to 0 or π/2. This work can also be extended to implement other important
nonlinear activation functions, such as ReLU [20].

To implement this algorithm and learn the optimal weights, n quantum neurons are
required, in addition to k ancilla qubits. The input vector is passed thorugh a neuron and
an RUS circuit activates the output to -1 or +1. Neurons can be stacked together in multiple
layers to form a deeper network; the RUS circuit is applied at each transition from the i-th
layer to the i+1-th layer. Note that at each layer in the circuit, the neurons must be rescaled
to [0, π/2) for the RUS circuit to be implemented correctly. The accuracy of the network
can be determined by taking the expectation value between the network output and ground
truth values. Based on the training accuracy, the weights are updated using the Nead-Medler
algorithm, which is a gradient-free optimization tool.

The significant contributions of this paper are that it the presents a quantum equivalent
of simulating nonlinearities that are commonly used in modern deep learning, and can be
adapted to simulate multiple nonlinearities. These nonlinearities are essential for learning
nontrivial patterns in complex distributions. However, this algorithm comes at a cost for
speed. While an equivalent classical neuron can compute a nonlinearity in O(N), this quan-
tum neuron does it in O((N

δ
)2.075(1

ε
)3.15), where N is the dimension of the input vector, δ is

a resolution parameter associated with settings weight and bias values, and ε is the distance
from the circuit output to the attractor (0 or π/2). Thus, for a single input vector, the
runtime is slower on a quantum computer than on a classical computer. However, Cao et
al. also note that their algorithm can learn from a superposition of training data, meaning
that the algorithm may be overall faster than a classical one if we are allowed to process
all the data simultaneously. This demonstrates a method of learning that is different from
classical algorithms, which rely on batches of data being fed sequentially to the model. From
initial results, it seems as though their network was able to learn appropriate weights from a
superposition of training data, but further analysis is required to understand the advantage
this strategy has over classical methods in terms of runtime and storage.

6 Limitations of training a quantum neuron

The algorithms presented in this paper make many assumptions about available resources
and existing implementations of key quantum constructs. They assume that they have access
to some oracle that presents them with input data already in a quantum state. However,
this task is nontrivial and is one of the reasons it is difficult to implement these algorithms
on a quantum computer. In this section we will analyze two of those assumptions: qRAM
implementations and encoding classical data into a quantum ready state.

9

6.1 qRAM

Quantum random access memory (qRAM) is a theoretical device that can perform memory
accesses in coherent quantum superposition and is one of the key elements needed in many
quantum machine learning algorithms to access input data. Several implementations have
been proposed for efficient qRAM. The most popular implementation, by Giovannetti et
al., uses an algorithm called bucket-brigade, which claims to reduce the number of switches
needed from O(N1/d), which is the complexity of implementing qRAM using conventional
architecture patterns, to O(log(N)) [21]. Here, d is the dimension of the memory array. This
algorithm works by reading out the memory address using a binary search tree like structure,
where each leaf is a memory cell, and only activates switches in the path of the tree. This
leads to an exponential decrease in the number of gates required in the running-time com-
putational complexity and they also argue it reduces the need for expensive error correcting
measures.

However, Arunachalam et al. later explored the robustness of the aforementioned qRAM
implementation and found significant limitations [22]. The bucket-brigade algorithm assumes
that its routing components will have a negligible error rate. Arunachalam et al. show
that if the algorithm using the qRAM requires more than a polynomial number of queries,
each gate used in the lookup path will require error correction. If each gate requires error
correction during routing, this will result in an exponential number of gates that will need to
be activated, negating any of the performance gained from using the bucket-brigade model.

6.2 Encoding Classical Data

Encoding classical data in an efficient manner is another problem when implementing quan-
tum machine learning algorithms. Quantum machine learning algorithms use data encoded
into a superposition of states: when this data is read, due to the measurement principle,
the superposition is destroyed, meaning that the data has to be re-encoded into a quantum
state. One recent approach into a better encoding strategy, by Park et al. [23], proposed
a flip-flop qRAM, which can transfer classical data and superimpose it into quantum basis
states where the amplitudes encode the data. This scheme takes O(N) qubits and O(MN)
steps to encode M entries of classical data consisting of N bits each. Moreover, since their
implementation involves a single quantum circuit, they do not have to perform error correc-
tion similar to the bucket-brigade model. However, their qRAM is rendered unusable after
accessing the data once. To circumvent this for specific use cases, they introduced the idea
of quantum forking, where a qubit can be processed in a series of independent processes in
superposition. The quantum forking process works especially well at calculating inner prod-
ucts, a kernel used frequently in machine learning, but is not very useful for other algorithms
due to the fact that the qRAM state can not be reused.

10

7 Conclusion

In this review, we analyzed the recent developments in quantum neurons, which are the
foundation of quantum neural networks. We found that the state of the field is optimistic
since there exists a quantum neuron that can mimic a classical neuron using commonly used
nonlinear activation functions. However, we note that there is still a long way to go to achieve
an advantage over classical neurons, since no quantum algorithm has yet proposed a faster
runtime than its classical equivalent at the level of a single step. That being said, there are
efforts to reduce training time in other aspects, such as training on data in a superposition
and figuring out which parameters to update using Grover’s search. Thus, there is still a
great deal of opportunity to make large contributions to the field.

References

[1] Ashish Kapoor, Nathan Wiebe, and Krysta Svore. Quantum perceptron models. In
Advances in Neural Information Processing Systems, pages 3999–4007, 2016.

[2] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical Review Letters, 103(15), Oct 2009.

[3] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector ma-
chine for big data classification. Physical Review Letters, 113(13), Sep 2014.

[4] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, 2015.

[5] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[6] Carlo Ciliberto, Mark Herbster, Alessandro Davide Ialongo, Massimiliano Pontil, An-
drea Rocchetto, Simone Severini, and Leonard Wossnig. Quantum machine learning: a
classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 474(2209):20170551, Jan 2018.

[7] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, pages 807–814, USA, 2010. Omnipress.

[8] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feed-
forward networks with a nonpolynomial activation function can approximate any func-
tion. Neural networks, 6(6):861–867, 1993.

[9] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive
power of neural networks: A view from the width. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 6231–6239. Curran Associates, Inc., 2017.

11

[10] Alex Krizhevsky, I Sutskever, and G Hinton. Imagenet classification with deep convo-
lutional neural. In Neural Information Processing Systems, pages 1–9, 2014.

[11] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

[12] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S.
Vetter. NVIDIA tensor core programmability, performance & precision. In Proceed-
ings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium
Workshops, IPDPSW 2018, 2018.

[13] Norm Jouppi. Google supercharges machine learning tasks with tpu custom chip.

[14] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

[15] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[16] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. Simulating a perceptron on a
quantum computer. Physics Letters A, 379(7):660 – 663, 2015.

[17] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA,
10th edition, 2011.

[18] Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. An arti-
ficial neuron implemented on an actual quantum processor. npj Quantum Information,
5(1):26, 2019.

[19] Maria Schuld. Machine learning in quantum spaces. Nature, 567(7747):179–181, mar
2019.

[20] Yudong Cao, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik. Quantum neuron: an
elementary building block for machine learning on quantum computers, 2017.

[21] Vittorio Giovannetti, Seth Lloyd, and Lorenzo MacCone. Quantum random access
memory. Physical Review Letters, 2008.

[22] Srinivasan Arunachalam, Vlad Gheorghiu, Tomas Jochym-O’Connor, Michele Mosca,
and Priyaa Varshinee Srinivasan. On the robustness of bucket brigade quantum RAM.
New Journal of Physics, 2015.

[23] Daniel K. Park, Francesco Petruccione, and June Koo Kevin Rhee. Circuit-Based Quan-
tum Random Access Memory for Classical Data. Scientific Reports, 2019.

12

	Abstract
	Introduction
	Deep Learning
	Classical Neurons
	Quantum Deep Learning Building Blocks
	Quantum Perceptrons
	Quantum Neurons

	Limitations of training a quantum neuron
	qRAM
	Encoding Classical Data

	Conclusion

