
COMS 6998 - Introduction to Quantum Computing Spring 2022

Lecture 4 - POVMs and Pure State Tomography

Lecturer: Prof. Henry Yuen Scribe: Kate Majidzadeh

1 Generalized Measurements

We’ve previously discussed standard basis measurements. Recall that if you have a d-dimensional
state |ψ〉 and you measure in the standard basis, then the probability of an outcome a ∈ [d] is

Pr
|ψ〉

[a] = |〈a|ψ〉|2 .

However, there are more general kinds of measurements that allow us to measure in a basis other
than the standard basis. We call these measurements projective measurements.

A set of matrices M = {M1, . . . ,Mk} is a k-outcome projective measurement if each Ma is a
projector and M1 + · · · + Mk = I, the identity matrix. The probability of obtaining outcome
a ∈ [k] when measuring a state |ψ〉 with projective measurement M is defined to be 〈ψ|Ma|ψ〉 =
Tr(Ma|ψ〉〈ψ|).

For example, if we want to measure in the orthogonal basis {|bj〉}, an orthogonal basis for Cd,
then the corresponding projective measurement would be M = {Ma}a∈[d] where Ma = |ba〉〈ba|. A
projective measurement of this form can be implemented using a unitary transformation plus a
standard basis measurement in the following way: first, apply a unitary U to |ψ〉 where U is a
unitary that maps |ba〉 to the standard basis vector |a〉. Then measure U |ψ〉 in the standard basis.
We have that the probability of obtaining outcome a is equal to

|〈a|U |ψ〉|2 = |〈ba|ψ〉|2

which is the same as if you directly measured |ψ〉 using the projective measurements {|ba〉〈ba|}a.

1.1 Positive Operative Value Measure (POVM)

The is an even more general type of measurement we can perform on a quantum state |ψ〉 ∈ Cd.
Suppose we do the following:

• Append a qubit to form the state |ψ〉 ⊗ |0〉.

• Measure the enlarged system |ψ〉 ⊗ |0〉 using a projective measurement M = {M1, . . . ,Mk}
that acts on the larger space Cd ⊗ C2.

The probability of obtaining outcome a ∈ [k] is, according to the foregoing discussion:

Pr[a] = (〈ψ| ⊗ 〈0|)Ma (|ψ〉 ⊗ |0〉) .



We can write with this probability in terms of |ψ〉 and some other matrix Qa. We label the systems
in Cd and C2 as A and B, respectively, and “bring out” the |ψ〉. We can rewrite our final outcome
probability equation as

Pr[a] = (〈ψ|A ⊗ 〈0|B)Ma (|ψ〉A ⊗ |0〉B)

= 〈ψ|A (IA ⊗ 〈0|B)Ma (IA ⊗ |0〉B) |ψ〉A
= 〈ψ|AQa |ψ〉A

where we’ve defined Qa to be the matrix

Qa = (IA ⊗ 〈0|B)Ma(IA ⊗ |0〉B)|ψ〉A .

Note that this is a matrix that acts on the A system only. In other words, Qa is a d× d matrix.

One way to understand this is that we can visualize Ma as a box with two “wires” that transforms
an input in the A ⊗ B space into an output in that same space. Each of these two wires acts on
one of these two spaces.

The operator Qa can be thought of us “capping” the B wire (by multiplying it by the qubit vector
|0〉) of Ma so that the resulting operator takes inputs from the A space and produces outputs in
the A space.

Another way of thinking about Qa is that, in the appropriate basis, it is the upper left block of Ma:

Ma =

(
Qa · · ·
· · · · · ·

)
.

The set of matrices Q = {Qa} formed in this way from the projective matrices {Ma} is called
a Positive Operative Value Measure (POVM). More formally, a k-outcome POVM is a set Q =
{Q1, . . . , Qk} of matrices such that Qa is PSD for all a ∈ [k] and

∑
aQa = I. The probability of

obtaining outcome a when measuring |ψ〉 is equal to 〈ψ|Qa|ψ〉.
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2 Continuous POVMs

So far measurements only have finitely many outcomes. What if we want to talk about measure-
ments that return a value from an infinite, or even continuous, set? For example, one can imagine
performing a measurement on a particle to determine its location. We would expect a real number
out.

Let Ω be an outcome space (which is potentially infinite) with a measure dx, which intuitively is
a way of assigning numbers to various region within the space (such as length, area, volume, etc.
depending on dimension). Then a continuous POVM over Ω is a collection of matricesQ = {Qx}x∈Ω

such that each Qx is PSD and ∫
Qx dx = I .

We can compare this to its discrete POVM counterpart,
∑

xQx = I.

Suppose we measure a state |ψ〉 with a continuous POVM Q. If Ω is an infinite space, such as the
real line R, then intuitively we expect the probability of obtaining any specific outcome x ∈ Ω to be
0 (just like how the probability of sampling any specific real number from the Gaussian distribution
is 0); instead we measure the probability of obtaining an outcome in a (measurable) region S ⊆ Ω:

Pr
|ψ〉

[x ∈ S] =

∫
S
〈ψ|Qx |ψ〉 dx .

Furthermore, suppose we have a function f : Ω → R and we want to determine the average value
of f if we measure a state |ψ〉, obtain value x ∈ Ω, and evaluate f(x):

E|ψ〉[f(x)] =

∫
Ω
〈ψ|Qx |ψ〉 f(x) dx .

3 Pure State Tomography

Recall that we’ve previously discussed a simple tomography algorithm for mixed states; it has
sample complexity Õ(d6) where d is the dimension. We will now discuss an algorithm for pure
state tomography that is more efficient: it only requires O(d) copies of the input state. This comes

close to the lower bound of Ω
(

d
log d

)
that we proved.

Suppose we are performing tomography on d-dimensional pure states. Define the outcome space
Ω to be S(Cd), the set of unit vectors in Cd. This is naturally endowed with the Haar measure,
which we denote by dθ. Define the continuous POVM Q = {Q|θ〉}|θ〉∈Ω as follows:

Q|θ〉 = |θ〉〈θ|⊗k
(
k + d− 1

k

)
.

Note that there is a matrix Q|θ〉 for every |θ〉 ∈ Cd, and the matrix acts on the space (Cd)⊗k. The
matrix Q|θ〉 is clearly PSD, and furthermore∫

Q|θ〉 dθ =

(
k + d− 1

k

)∫
|θ〉〈θ|⊗k dθ =

(
k + d− 1

k

)
P sym
d,k

Tr(P sym
d,k )

= P sym
d,k
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where we used our formula for integrating |θ〉〈θ|⊗k over the Haar measure. One might be worried
that this is not a valid continuous POVM because the integral is not the identity matrix. However,
for all intents and purposes it is, because we are only going to measure states of the form |ψ〉⊗k,
which is a member of the symmetric subspace Sym(d, k), for which the projection P sym

d,k is effectively
the identity matrix. Thus we can treat Q as a valid continuous POVM.

The algorithm. Given |ψ〉⊗k for some |ψ〉 ∈ Cd, we perform the continuous POVM Q on it to
obtain an outcome |θ〉 ∈ Cd. Ideally, this outcome should be equal to |ψ〉 but it won’t be exactly.
How close of an estimate is it? We can measure this by considering the squared overlap between
|ψ〉 and |θ〉. Define the function f(|θ〉) = |〈θ|ψ〉|2 where |ψ〉 is the unknown state. We want to
know what f(|θ〉) is on average. According to our formula:

E
[
f(x)

]
=

∫
〈ψ|⊗kQ|θ〉 |ψ〉⊗k f(|θ〉) dθ

=

(
k + d− 1

k

)∫
〈ψ|⊗k

(
|θ〉〈θ|⊗k

)
|ψ〉⊗k · |〈θ|ψ〉|2 dθ (Definition of Q|θ〉)

=

(
k + d− 1

k

)∫
〈ψ|⊗k+1

(
|θ〉〈θ|⊗k+1

)
|ψ〉⊗k+1 dθ

=

(
k + d− 1

k

)
〈ψ|⊗k+1

(∫
|θ〉〈θ|⊗k+1 dθ

)
|ψ〉⊗k+1

=

(
k + d− 1

k

)
〈ψ|⊗k+1 ·

P sym
d,k+1

Tr(P sym
d,k+1)

|ψ〉⊗k+1 (Formula for integral)

=

(
k + d− 1

k

)
·
(
k + d

k + 1

)−1

(Dimension of P sym
d,k+1)

=
(k + d− 1)!

k!(d− 1)!
· (k + 1)!(d− 1)!

(k + d)!

=
k + 1

k + d
.

Suppose we set k = d/ε. Then this quantity is 1−O(ε), which means that on average the output
of the tomography algorithm will have high overlap with the unknown input state |ψ〉.
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