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1 Overview

In the first half of Lecture 4, we introduce symmetric subspace, which ties to a pure state tomog-
raphy algorithm that will be finished up in the second half of Lecture 4. Before rigorously defining
symmetric subspace, we will first see several motivating scenarios considering random state in a
box.

2 Random State in a Box

2.1 Scenario 1: a random state with classical randomness

Consider the following procedure:

1. Saple a random string x ∈ {0, 1}n

2. Prepare n qubits in the state |x1, x2, . . . , xn〉

3. Put the n qubits in a box.

If you were handed this box, but weren’t allowed to open it to “take a look” at the state (i.e.
measure it), how would you describe your belief about the state of the box? It wouldn’t be a
pure state, because the state is a probabilistic mixture. You would have to use the density matrix
formalism.

Let ρ describes the density matrix of the state in the box. It is the sum of the pure density matrix
|x〉〈x|, over all x ∈ {0, 1}n, weighted by the probability 2−n.

ρ =
∑

x∈{0,1}n
2−n|x〉〈x| = 2−nI

This last equality follows because
∑

x∈{0,1}n |x〉〈x| is equal to the 2n × 2n identity matrix.

The identity (up to scaling) is known as the maximally mixed state, because it is, in a sense,
maximally random.

2.2 Scenario 2: a random state with quantum randomness

Let’s now consider the following procedure:
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1. Sample a classical description of a Haar random vector “|ψ〉” of dimension d = 2n (e.g. by
sampling complex Gaussians are described in the previous lecture).

2. Prepare n qubits in the state |ψ〉.

3. Put the state in a box.

Note that this procedure is not something that can be carried out efficiently: this is because
sampling a Haar random vector takes time 2n, which is huge for non-small n. As discussed last
time in lecture, constructing a Haar-random n-qubit state requires exponentially large quantum
circuits, so that also takes a large amount of resources. However now are not concerned with
efficiency; we are interested in the question of how we mathematically describe the state of the box
(before we open it).

Let σ describes the density matrix of the state in the box. What is more subtle now is that we
are sampling |ψ〉 from a continuous distribution, so it’s not obvious how to describe it as a convex
combination of a finite number of pure states. We can instead describe σ as an integral over S(Cd)
(which recall denotes the set of unit vectors in Cd):

σ =

∫
|ψ〉〈ψ|dψ

where dψ denotes Haar measure on S(Cd).

If you’re worried about what it means to take an integral over density matrices, one can think of
σ as the limit of density matrices

σε =
1

|Nε|
∑
|ψ〉∈Nε

|ψ〉〈ψ|

where Nε denotes a finite discretization of the sphere S(Cd) (e.g. every point on S(Cd) is within ε
of a point in Nε, and “covered” by the same number of points in Nε).

Interestingly, σ = ρ (the density matrix from Scenario 1) and we shall see this by the definition of
Haar measure.

Claim 1.

σ =

∫
|ψ〉〈ψ| dψ = 2−nI

Proof. First we show that σ is unitarily invariant, i.e. for all unitaries U , UσU † = σ.

UσU † =

∫
U |ψ〉〈ψ|U † dψ =

∫
|ψ〉〈ψ|dψ = σ

where in the second to last equality we use the definition of a Haar random state, specifically that
|ψ〉 ∼ Haar(d) =⇒ U |ψ〉 ∼ Haar(d). Thus for all unitaries U , Uσ = σU . For all A ∈ Cd×d, A
can be written as a linear combination of unitary matrices (refer to this link), Aσ = σA. It is left
as a question in Problem Set 2 to show that σ is thus a multiple of the identity matrix I. Since
Tr(σ) = 1, we have σ = 2−nI.

According to this calculation, a Haar-random state does not differ from a random classical bitstring.
We will see that the difference between Haar-random quantum states and random classical states
only become apparent when you consider more complicated scenarios.
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2.3 Scenario 3: another random state with classical randomness

Consider the following procedure:

1. Sample a random string x ∈ {0, 1}n

2. Prepare 2n qubits in the state |x, x〉

3. Put the 2n qubits in a box

Let ρ′ denote the density matrix of the state in the box:

ρ′ =
∑

x∈{0,1}n
2−n|x, x〉〈x, x|

Note that this is different from the maximally entangled state 1√
2n

∑
x∈{0,1}n |x, x〉, which is a pure

state.

Note also this is not the maximally mixed state on 2n qubits (i.e. dimension 22n×22n); that would
be written as

2−2n
∑

x,y∈{0,1}n
|x, y〉〈x, y| .

Further, there are no non-zero off-diagonal entries in ρ′ (if we write the entries of ρ′ in the standard
basis) meaning that it represents a classical mixture of states.

2.4 Scenario 4: another random state with quantum randomness

Consider the following procedure:

1. Sample a classical description of a Haar random vector “|ψ〉” of dimension d = 2n (e.g. by
sampling complex Gaussians are described in the previous lecture).

2. Prepare 2n qubits in the state |ψ〉 ⊗ |ψ〉.

3. Put the state in a box.

Let σ′ describes the density matrix of the state in the box. Again, we can describe σ′ with a integral
over S(Cd):

σ′ =

∫
|ψ〉〈ψ|⊗2 dψ .

This is a 2n-qubit density matrix (i.e. it has dimension d2 × d2). What are the properties of this
matrix? What are its entries? To determine σ′, we now need to discuss the symmetric subspace.
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3 The Symmetric Subspace

Definition 2. For positive integers d, k, define the symmetric subspace, denoted as Sym(d, k)

Sym(d, k) = span
{
|ψ〉⊗k | |ψ〉 ∈ Cd

}
⊆ (Cd)⊗k

Let P sym
d,k be the projector onto Sym(d, k).

We shall first show that Sym(d, k) is in fact a proper subspace of (Cd)⊗k with the following claim.

Claim 3. P sym
d,k 6= I

Proof. It suffices to show one counter-example: |0, 1〉 − |1, 0〉 /∈ Sym(d, 2). To see this is true,
consider any |ψ〉 ∈ Cd, we have

〈ψ,ψ|
(
|0, 1〉 − |1, 0〉

)
= 〈ψ|0〉 〈ψ|1〉 − 〈ψ|1〉 〈ψ|0〉 = 0

. Now consider a vector |θ〉 ∈ Sym(d, 2); by definition this is a linear combination of states of the
form

|θ〉 =
∑
i

αi|ψi〉 ⊗ |ψi〉

where αi ∈ C and |ψi〉 ∈ Cd. Then we have

〈θ|
(
|0, 1〉 − |1, 0〉

)
=
∑
i

αi(〈ψi| ⊗ 〈ψi|) (|0, 1〉 − |1, 0〉) = 0 .

This shows that |0, 1〉 − |1, 0〉 is orthogonal to Sym(d, 2).

Another relatively straightforward claim is as follows.

Claim 4. σ′ =
∫
|ψ〉〈ψ|⊗2 dψ is supported on Sym(d, 2).

Proof.

P sym
d,2 σ′ =

∫
P sym
d,2 |ψ〉〈ψ|

⊗2 dψ =

∫
|ψ〉〈ψ|⊗2 dψ = σ′

In fact, σ′ is a multiple of P sym
d,2 . The following claim requires representation theory that will not

be covered in this class, so it is stated without a proof.

Theorem 5.

σ′ =
P sym
d,2

Tr(P sym
d,2 )

.

Nevertheless, we will be able to specify Tr(P sym
d,2 ) by specifying a set of orthogonal basis of Sym(d, k).

Before doing so, we shall give an equivalent definition of Sym(d, k).
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Definition 6. For a permutation π ∈ Sk, define the unitary Rπ acting on (Cd)⊗k such that Rπ|ψ1〉⊗
· · · ⊗ |ψk〉 = |ψπ(1)〉 ⊗ · · · ⊗ |ψπ(k)〉 where |ψi〉 ∈ Cd for i ∈ [k]. Define

Sym(d, k)′ = {v ∈ (Cd)⊗k | Rπ v = v ∀ π ∈ Sk}

In other words, Sym(d, k)′ is the set of all vectors (not necessarily unit length) on k registers, each
register of dimension d, such that permuting the k registers leaves the vector invariant.

We verify that Sym(d, k)′ forms a subspace: if v, w ∈ Sym(d, k)′, then for all permutations π ∈ Sk
Rπ(v + w) = Rπv +Rπw = v + w .

Therefore v + w ∈ Sym(d, k)′.

Claim 7. Sym(d, k)′ = Sym(d, k)

Proof. The direction Sym(d, k) ⊆ Sym(d, k)′ follows directly through definitions. The other direc-
tion is more involved. Interested readers can refer to [Har13].

With this equivalent definition, we can give a characterization of the projector P sym
d,k .

Claim 8. P sym
d,k = 1

k!

∑
π∈Sk Rπ

Proof. Let Π = 1
k!

∑
π∈Sk Rπ. Using the definition of Rπ, one can directly verify that Π is Hermitian

and Π2 = I, and thus Π is a projector. For every π ∈ Sk, one can verify that RπΠ = Π, which
implies Im(Π) ⊆ Sym(d, k). Finally, for every |θ〉 ∈ Sym(d, k), it is evident that Π|θ〉 = |θ〉, which
implies that Sym(d, k) ⊆ Im(Π), and thus Sym(d, k) = Im(Π).

3.1 Examples and nonexamples of states in the symmetric subspace

The following states are examples of states in the symmetric subspace:

1. |0, 0〉 ∈ Sym(2, 2)

2. 1√
2

(
|00〉+ |11〉

)
∈ Sym(2, 2)

3. 1√
2

(
|01〉+ |10〉

)
∈ Sym(2, 2)

4. 1√
2

(
|00〉 − |11〉

)
∈ Sym(2, 2)

States that are not in the symmetric subspace:

1. |0, 1〉 /∈ Sym(2, 2)

2. 1√
2

(
|01〉 − |10〉

)
/∈ Sym(2, 2) .

This second state is in what’s called the anti-symmetric subspace, because if you swap the two
registers (i.e. apply Rπ for π = (12)), then you obtain a minus sign:

Rπ
1√
2

(
|01〉 − |10〉

)
= − 1√

2

(
|01〉 − |10〉

)
.
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3.2 Orthogonal basis for Sym(d, k)

Definition 9. (Symmetrization) Fix orthogonal basis |1〉, |2〉, . . . , |d〉 for Cd. Consider a d-tuple
t = (t1, · · · , td) ∈ Nd such that

∑d
j=1 tj = k, and the state |ψ〉 = |1〉⊗t1 |2〉⊗t2 · · · |d〉⊗td. We can

”symmetrize” |ψ〉 by the following procedure. Consider the set

St = {(s1, s2, · · · , sk) ∈ [d]k |
k∑
i=1

1[si = j] = tj ∀ j ∈ [d]}

Intuitively, given t = (t1, · · · , td), tj specifies the number of copies of |j〉 in |ψ〉, and each (s1, s2, · · · , sk) ∈
S(t1,··· ,td) will assign tj registers out of all k possible registers for |j〉, i.e. si ∈ [d] specifies that the
i-th register is |si〉. Then the symmetrization of |ψ〉 is∑

(s1,s2,··· ,sk)∈St

|s1〉 ⊗ |s2〉 ⊗ · · · ⊗ |sk〉

Denote ||t1, · · · , td〉〉 as the symmetrization of |1〉⊗t1 |2〉⊗t2 · · · |d〉⊗td.

Theorem 10. {||t1, · · · , td〉〉 | (t1, · · · , td) ∈ Nd,
∑d

j=1 tj = k} forms an orthogonal basis for
Sym(d, k).

Proof. It’s straighforward to verify that the elements in the set are in Sym(d, k). By noting that
two elements ||t1, · · · , td〉〉 and ||t′1, · · · , t′d〉〉 must differ at some j such that tj 6= t′j , it follows that
the elements pairwise orthogonal.

To show that the set spans Sym(d, k), consider any k-tuple a = (a1, a2, · · · , ak) ∈ [d]k and the state
|ψa〉 = |a1〉 ⊗ |a2〉 ⊗ · · · ⊗ |ak〉. We have that {|ψa〉 | a = (a1, a2, · · · , ak) ∈ [d]k} spans (Cd)⊗k. It
requires a bit reasoning to verify that

P sym
d,k |ψa〉 =

1

k!

∑
π∈Sk

Rπ|ψa〉 = C||t1, · · · , td〉〉

where tj =
∑n

i=1 1[ai = j] and C is a normalization factor. This observation completes the proof.

Example 11. Consider d = 2, k = 3 and the basis states |1〉, |2〉. The following states form a
orthogonal (not normalized) basis for Sym(2, 3).

||3, 0〉〉 = |1〉 ⊗ |1〉 ⊗ |1〉
||2, 1〉〉 = |1〉 ⊗ |1〉 ⊗ |2〉+ |2〉 ⊗ |1〉 ⊗ |1〉+ |1〉 ⊗ |2〉 ⊗ |1〉
||1, 2〉〉 = |1〉 ⊗ |2〉 ⊗ |2〉+ |2〉 ⊗ |1〉 ⊗ |2〉+ |2〉 ⊗ |2〉 ⊗ |1〉
||0, 3〉〉 = |0〉 ⊗ |0〉 ⊗ |0〉

With a combinatorics argument considering the number of ways to put k indistinguishable balls
into d distinguishable boxes, one can arrive at the following corollary.

Corollary 12. dim(Sym(d, k)) =
(
k+d−1
k

)
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Finally, we can answer the initial question about σ′.

Corollary 13.∫
|ψ〉〈ψ|⊗2 dψ =

(
k + d− 1

k

)−1
P sym
d,k =

1

(k + 1)(k + 2) · · · (k + d− 1)

∑
π∈Sk

Rπ

A proof of this can be found in [Wat18].
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