1 Overview

In the first half of Lecture 4, we introduce symmetric subspace, which ties to a pure state tomography algorithm that will be finished up in the second half of Lecture 4 . Before rigorously defining symmetric subspace, we will first see several motivating scenarios considering random state in a box.

2 Random State in a Box

2.1 Scenario 1: a random state with classical randomness

Consider the following procedure:

1. Saple a random string $x \in\{0,1\}^{n}$
2. Prepare n qubits in the state $\left|x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
3. Put the n qubits in a box.

If you were handed this box, but weren't allowed to open it to "take a look" at the state (i.e. measure it), how would you describe your belief about the state of the box? It wouldn't be a pure state, because the state is a probabilistic mixture. You would have to use the density matrix formalism.

Let ρ describes the density matrix of the state in the box. It is the sum of the pure density matrix $|x\rangle\langle x|$, over all $x \in\{0,1\}^{n}$, weighted by the probability 2^{-n}.

$$
\rho=\sum_{x \in\{0,1\}^{n}} 2^{-n}|x\rangle\langle x|=2^{-n} I
$$

This last equality follows because $\sum_{x \in\{0,1\}^{n}}|x\rangle\langle x|$ is equal to the $2^{n} \times 2^{n}$ identity matrix.
The identity (up to scaling) is known as the maximally mixed state, because it is, in a sense, maximally random.

2.2 Scenario 2: a random state with quantum randomness

Let's now consider the following procedure:

1. Sample a classical description of a Haar random vector " $|\psi\rangle$ " of dimension $d=2^{n}$ (e.g. by sampling complex Gaussians are described in the previous lecture).
2. Prepare n qubits in the state $|\psi\rangle$.
3. Put the state in a box.

Note that this procedure is not something that can be carried out efficiently: this is because sampling a Haar random vector takes time 2^{n}, which is huge for non-small n. As discussed last time in lecture, constructing a Haar-random n-qubit state requires exponentially large quantum circuits, so that also takes a large amount of resources. However now are not concerned with efficiency; we are interested in the question of how we mathematically describe the state of the box (before we open it).

Let σ describes the density matrix of the state in the box. What is more subtle now is that we are sampling $|\psi\rangle$ from a continuous distribution, so it's not obvious how to describe it as a convex combination of a finite number of pure states. We can instead describe σ as an integral over $S\left(\mathbb{C}^{d}\right)$ (which recall denotes the set of unit vectors in \mathbb{C}^{d}):

$$
\sigma=\int|\psi\rangle\langle\psi| \mathrm{d} \psi
$$

where $\mathrm{d} \psi$ denotes Haar measure on $S\left(\mathbb{C}^{d}\right)$.
If you're worried about what it means to take an integral over density matrices, one can think of σ as the limit of density matrices

$$
\sigma_{\epsilon}=\frac{1}{\left|N_{\epsilon}\right|} \sum_{|\psi\rangle \in N_{\epsilon}}|\psi\rangle\langle\psi|
$$

where N_{ϵ} denotes a finite discretization of the sphere $S\left(\mathbb{C}^{d}\right)$ (e.g. every point on $S\left(\mathbb{C}^{d}\right)$ is within ϵ of a point in N_{ϵ}, and "covered" by the same number of points in N_{ϵ}).

Interestingly, $\sigma=\rho$ (the density matrix from Scenario 1) and we shall see this by the definition of Haar measure.

Claim 1.

$$
\sigma=\int|\psi\rangle\langle\psi| \mathrm{d} \psi=2^{-n} I
$$

Proof. First we show that σ is unitarily invariant, i.e. for all unitaries $U, U \sigma U^{\dagger}=\sigma$.

$$
U \sigma U^{\dagger}=\int U|\psi\rangle\langle\psi| U^{\dagger} \mathrm{d} \psi=\int|\psi\rangle\langle\psi| \mathrm{d} \psi=\sigma
$$

where in the second to last equality we use the definition of a Haar random state, specifically that $|\psi\rangle \sim \operatorname{Haar}(d) \Longrightarrow U|\psi\rangle \sim \operatorname{Haar}(d)$. Thus for all unitaries $U, U \sigma=\sigma U$. For all $A \in \mathbb{C}^{d \times d}, A$ can be written as a linear combination of unitary matrices (refer to this link), $A \sigma=\sigma A$. It is left as a question in Problem Set 2 to show that σ is thus a multiple of the identity matrix I. Since $\operatorname{Tr}(\sigma)=1$, we have $\sigma=2^{-n} I$.

According to this calculation, a Haar-random state does not differ from a random classical bitstring. We will see that the difference between Haar-random quantum states and random classical states only become apparent when you consider more complicated scenarios.

2.3 Scenario 3: another random state with classical randomness

Consider the following procedure:

1. Sample a random string $x \in\{0,1\}^{n}$
2. Prepare $2 n$ qubits in the state $|x, x\rangle$
3. Put the $2 n$ qubits in a box

Let ρ^{\prime} denote the density matrix of the state in the box:

$$
\rho^{\prime}=\sum_{x \in\{0,1\}^{n}} 2^{-n}|x, x\rangle\langle x, x|
$$

Note that this is different from the maximally entangled state $\frac{1}{\sqrt{2^{n}}} \sum_{x \in\{0,1\}^{n}}|x, x\rangle$, which is a pure state.

Note also this is not the maximally mixed state on $2 n$ qubits (i.e. dimension $2^{2 n} \times 2^{2 n}$); that would be written as

$$
2^{-2 n} \sum_{x, y \in\{0,1\}^{n}}|x, y\rangle\langle x, y| .
$$

Further, there are no non-zero off-diagonal entries in ρ^{\prime} (if we write the entries of ρ^{\prime} in the standard basis) meaning that it represents a classical mixture of states.

2.4 Scenario 4: another random state with quantum randomness

Consider the following procedure:

1. Sample a classical description of a Haar random vector " $|\psi\rangle$ " of dimension $d=2^{n}$ (e.g. by sampling complex Gaussians are described in the previous lecture).
2. Prepare $2 n$ qubits in the state $|\psi\rangle \otimes|\psi\rangle$.
3. Put the state in a box.

Let σ^{\prime} describes the density matrix of the state in the box. Again, we can describe σ^{\prime} with a integral over $S\left(\mathbb{C}^{d}\right)$:

$$
\sigma^{\prime}=\int|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2} \mathrm{~d} \psi .\right.
$$

This is a $2 n$-qubit density matrix (i.e. it has dimension $d^{2} \times d^{2}$). What are the properties of this matrix? What are its entries? To determine σ^{\prime}, we now need to discuss the symmetric subspace.

3 The Symmetric Subspace

Definition 2. For positive integers d, k, define the symmetric subspace, denoted as $\operatorname{Sym}(d, k)$

$$
\left.\operatorname{Sym}(d, k)=\operatorname{span}\left\{|\psi\rangle^{\otimes k}| | \psi\right\rangle \in \mathbb{C}^{d}\right\} \subseteq\left(\mathbb{C}^{d}\right)^{\otimes k}
$$

Let $P_{d, k}^{\mathrm{sym}}$ be the projector onto $\operatorname{Sym}(d, k)$.
We shall first show that $\operatorname{Sym}(d, k)$ is in fact a proper subspace of $\left(\mathbb{C}^{d}\right)^{\otimes k}$ with the following claim.
Claim 3. $P_{d, k}^{\text {sym }} \neq I$
Proof. It suffices to show one counter-example: $|0,1\rangle-|1,0\rangle \notin \operatorname{Sym}(d, 2)$. To see this is true, consider any $|\psi\rangle \in \mathbb{C}^{d}$, we have

$$
\langle\psi, \psi|(|0,1\rangle-|1,0\rangle)=\langle\psi \mid 0\rangle\langle\psi \mid 1\rangle-\langle\psi \mid 1\rangle\langle\psi \mid 0\rangle=0
$$

. Now consider a vector $|\theta\rangle \in \operatorname{Sym}(d, 2)$; by definition this is a linear combination of states of the form

$$
|\theta\rangle=\sum_{i} \alpha_{i}\left|\psi_{i}\right\rangle \otimes\left|\psi_{i}\right\rangle
$$

where $\alpha_{i} \in \mathbb{C}$ and $\left|\psi_{i}\right\rangle \in \mathbb{C}^{d}$. Then we have

$$
\langle\theta|(|0,1\rangle-|1,0\rangle)=\sum_{i} \alpha_{i}\left(\left\langle\psi_{i}\right| \otimes\left\langle\psi_{i}\right|\right)(|0,1\rangle-|1,0\rangle)=0 .
$$

This shows that $|0,1\rangle-|1,0\rangle$ is orthogonal to $\operatorname{Sym}(d, 2)$.

Another relatively straightforward claim is as follows.
Claim 4. $\sigma^{\prime}=\int|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2} \mathrm{~d} \psi\right.$ is supported on $\operatorname{Sym}(d, 2)$.
Proof.

$$
P_{d, 2}^{\text {sym }} \sigma^{\prime}=\int P_{d, 2}^{\text {sym }}|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2} \mathrm{~d} \psi=\int \mid \psi\right\rangle\left\langle\left.\psi\right|^{\otimes 2} \mathrm{~d} \psi=\sigma^{\prime}\right.
$$

In fact, σ^{\prime} is a multiple of $P_{d, 2}^{\text {sym }}$. The following claim requires representation theory that will not be covered in this class, so it is stated without a proof.

Theorem 5.

$$
\sigma^{\prime}=\frac{P_{d, 2}^{\mathrm{sym}}}{\operatorname{Tr}\left(P_{d, 2}^{\mathrm{sym}}\right)}
$$

Nevertheless, we will be able to specify $\operatorname{Tr}\left(P_{d, 2}^{\text {sym }}\right)$ by specifying a set of orthogonal basis of $\operatorname{Sym}(d, k)$. Before doing so, we shall give an equivalent definition of $\operatorname{Sym}(d, k)$.

Definition 6. For a permutation $\pi \in S_{k}$, define the unitary R_{π} acting on $\left(\mathbb{C}^{d}\right)^{\otimes k}$ such that $R_{\pi}\left|\psi_{1}\right\rangle \otimes$ $\cdots \otimes\left|\psi_{k}\right\rangle=\left|\psi_{\pi(1)}\right\rangle \otimes \cdots \otimes\left|\psi_{\pi(k)}\right\rangle$ where $\left|\psi_{i}\right\rangle \in \mathbb{C}^{d}$ for $i \in[k]$. Define

$$
\operatorname{Sym}(d, k)^{\prime}=\left\{v \in\left(\mathbb{C}^{d}\right)^{\otimes k} \mid R_{\pi} v=v \forall \pi \in S_{k}\right\}
$$

In other words, $\operatorname{Sym}(d, k)^{\prime}$ is the set of all vectors (not necessarily unit length) on k registers, each register of dimension d, such that permuting the k registers leaves the vector invariant.

We verify that $\operatorname{Sym}(d, k)^{\prime}$ forms a subspace: if $v, w \in \operatorname{Sym}(d, k)^{\prime}$, then for all permutations $\pi \in S_{k}$

$$
R_{\pi}(v+w)=R_{\pi} v+R_{\pi} w=v+w
$$

Therefore $v+w \in \operatorname{Sym}(d, k)^{\prime}$.
Claim 7. $\operatorname{Sym}(d, k)^{\prime}=\operatorname{Sym}(d, k)$

Proof. The direction $\operatorname{Sym}(d, k) \subseteq \operatorname{Sym}(d, k)^{\prime}$ follows directly through definitions. The other direction is more involved. Interested readers can refer to [Har13].

With this equivalent definition, we can give a characterization of the projector $P_{d, k}^{\mathrm{sym}}$.
Claim 8. $P_{d, k}^{\mathrm{sym}}=\frac{1}{k!} \sum_{\pi \in S_{k}} R_{\pi}$
Proof. Let $\Pi=\frac{1}{k!} \sum_{\pi \in S_{k}} R_{\pi}$. Using the definition of R_{π}, one can directly verify that Π is Hermitian and $\Pi^{2}=I$, and thus Π is a projector. For every $\pi \in S_{k}$, one can verify that $R_{\pi} \Pi=\Pi$, which implies $\operatorname{Im}(\Pi) \subseteq \operatorname{Sym}(d, k)$. Finally, for every $|\theta\rangle \in \operatorname{Sym}(d, k)$, it is evident that $\Pi|\theta\rangle=|\theta\rangle$, which implies that $\operatorname{Sym}(d, k) \subseteq \operatorname{Im}(\Pi)$, and thus $\operatorname{Sym}(d, k)=\operatorname{Im}(\Pi)$.

3.1 Examples and nonexamples of states in the symmetric subspace

The following states are examples of states in the symmetric subspace:

1. $|0,0\rangle \in \operatorname{Sym}(2,2)$
2. $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \in \operatorname{Sym}(2,2)$
3. $\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \in \operatorname{Sym}(2,2)$
4. $\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \in \operatorname{Sym}(2,2)$

States that are not in the symmetric subspace:

1. $|0,1\rangle \notin \operatorname{Sym}(2,2)$
2. $\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) \notin \operatorname{Sym}(2,2)$.

This second state is in what's called the anti-symmetric subspace, because if you swap the two registers (i.e. apply R_{π} for $\pi=(12)$), then you obtain a minus sign:

$$
R_{\pi} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=-\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
$$

3.2 Orthogonal basis for $\operatorname{Sym}(d, k)$

Definition 9. (Symmetrization) Fix orthogonal basis $|1\rangle,|2\rangle, \ldots,|d\rangle$ for \mathbb{C}^{d}. Consider a d-tuple $t=\left(t_{1}, \cdots, t_{d}\right) \in \mathbb{N}^{d}$ such that $\sum_{j=1}^{d} t_{j}=k$, and the state $|\psi\rangle=|1\rangle^{\otimes t_{1}}|2\rangle^{\otimes t_{2}} \cdots|d\rangle^{\otimes t_{d}}$. We can "symmetrize" $|\psi\rangle$ by the following procedure. Consider the set

$$
S_{t}=\left\{\left(s_{1}, s_{2}, \cdots, s_{k}\right) \in[d]^{k} \mid \sum_{i=1}^{k} \mathbb{1}\left[s_{i}=j\right]=t_{j} \forall j \in[d]\right\}
$$

Intuitively, given $t=\left(t_{1}, \cdots, t_{d}\right), t_{j}$ specifies the number of copies of $|j\rangle$ in $|\psi\rangle$, and each $\left(s_{1}, s_{2}, \cdots, s_{k}\right) \in$ $S_{\left(t_{1}, \cdots, t_{d}\right)}$ will assign t_{j} registers out of all k possible registers for $|j\rangle$, i.e. $s_{i} \in[d]$ specifies that the i-th register is $\left|s_{i}\right\rangle$. Then the symmetrization of $|\psi\rangle$ is

$$
\sum_{\left(s_{1}, s_{2}, \cdots, s_{k}\right) \in S_{t}}\left|s_{1}\right\rangle \otimes\left|s_{2}\right\rangle \otimes \cdots \otimes\left|s_{k}\right\rangle
$$

Denote $\left.\left.\| t_{1}, \cdots, t_{d}\right\rangle\right\rangle$ as the symmetrization of $|1\rangle^{\otimes t_{1}}|2\rangle^{\otimes t_{2}} \cdots|d\rangle^{\otimes t_{d}}$.
Theorem 10. $\left.\left.\left\{\| t_{1}, \cdots, t_{d}\right\rangle\right\rangle \mid\left(t_{1}, \cdots, t_{d}\right) \in \mathbb{N}^{d}, \sum_{j=1}^{d} t_{j}=k\right\}$ forms an orthogonal basis for $\operatorname{Sym}(d, k)$.

Proof. It's straighforward to verify that the elements in the set are in $\operatorname{Sym}(d, k)$. By noting that two elements $\left.\left.\| t_{1}, \cdots, t_{d}\right\rangle\right\rangle$ and $\left.\left.\| t_{1}^{\prime}, \cdots, t_{d}^{\prime}\right\rangle\right\rangle$ must differ at some j such that $t_{j} \neq t_{j}^{\prime}$, it follows that the elements pairwise orthogonal.
To show that the set spans $\operatorname{Sym}(d, k)$, consider any k-tuple $a=\left(a_{1}, a_{2}, \cdots, a_{k}\right) \in[d]^{k}$ and the state $\left|\psi_{a}\right\rangle=\left|a_{1}\right\rangle \otimes\left|a_{2}\right\rangle \otimes \cdots \otimes\left|a_{k}\right\rangle$. We have that $\left\{\left|\psi_{a}\right\rangle \mid a=\left(a_{1}, a_{2}, \cdots, a_{k}\right) \in[d]^{k}\right\}$ spans $\left(\mathbb{C}^{d}\right)^{\otimes k}$. It requires a bit reasoning to verify that

$$
\left.\left.P_{d, k}^{\mathrm{sym}}\left|\psi_{a}\right\rangle=\frac{1}{k!} \sum_{\pi \in S_{k}} R_{\pi}\left|\psi_{a}\right\rangle=C| | t_{1}, \cdots, t_{d}\right\rangle\right\rangle
$$

where $t_{j}=\sum_{i=1}^{n} \mathbb{1}\left[a_{i}=j\right]$ and C is a normalization factor. This observation completes the proof.

Example 11. Consider $d=2, k=3$ and the basis states $|1\rangle,|2\rangle$. The following states form a orthogonal (not normalized) basis for $\operatorname{Sym}(2,3)$.

$$
\begin{aligned}
& \| 3,0\rangle\rangle=|1\rangle \otimes|1\rangle \otimes|1\rangle \\
& \| 2,1\rangle\rangle=|1\rangle \otimes|1\rangle \otimes|2\rangle+|2\rangle \otimes|1\rangle \otimes|1\rangle+|1\rangle \otimes|2\rangle \otimes|1\rangle \\
& \| 1,2\rangle\rangle=|1\rangle \otimes|2\rangle \otimes|2\rangle+|2\rangle \otimes|1\rangle \otimes|2\rangle+|2\rangle \otimes|2\rangle \otimes|1\rangle \\
& \| 0,3\rangle\rangle=|0\rangle \otimes|0\rangle \otimes|0\rangle
\end{aligned}
$$

With a combinatorics argument considering the number of ways to put k indistinguishable balls into d distinguishable boxes, one can arrive at the following corollary.
Corollary 12. $\operatorname{dim}(\operatorname{Sym}(d, k))=\binom{k+d-1}{k}$

Finally, we can answer the initial question about σ^{\prime}.

Corollary 13.

$$
\int|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2} \mathrm{~d} \psi=\binom{k+d-1}{k}^{-1} P_{d, k}^{\mathrm{sym}}=\frac{1}{(k+1)(k+2) \cdots(k+d-1)} \sum_{\pi \in S_{k}} R_{\pi}\right.
$$

A proof of this can be found in Wat18.

References

[Har13] Aram W Harrow. The church of the symmetric subspace. arXiv preprint arXiv:1308.6595, 2013.
[Wat18] John Watrous. The theory of quantum information. Cambridge university press, 2018.

