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Lecture 4 - Haar-random states and the symmetric subspace

Lecturer: Henry Yuen Scribes: Yulong Li

1 Overview

In the first half of Lecture 4, we introduce symmetric subspace, which ties to a pure state tomog-
raphy algorithm that will be finished up in the second half of Lecture 4. Before rigorously defining
symmetric subspace, we will first see several motivating scenarios considering random state in a
box.

2 Random State in a Box

2.1 Scenario 1: a random state with classical randomness

Consider the following procedure:

1. Saple a random string x € {0,1}"

2. Prepare n qubits in the state |x1,x2,...,2y,)

3. Put the n qubits in a box.
If you were handed this box, but weren’t allowed to open it to “take a look” at the state (i.e.
measure it), how would you describe your belief about the state of the box? It wouldn’t be a

pure state, because the state is a probabilistic mixture. You would have to use the density matrix
formalism.

Let p describes the density matrix of the state in the box. It is the sum of the pure density matrix
|z) (x|, over all z € {0,1}", weighted by the probability 27"

p= Z 27" x) (x| =271

ze{0,1}"
This last equality follows because ), g 1yn [2)(z] is equal to the 2" x 2" identity matrix.

The identity (up to scaling) is known as the mazimally mized state, because it is, in a sense,
maximally random.

2.2 Scenario 2: a random state with quantum randomness

Let’s now consider the following procedure:



1. Sample a classical description of a Haar random vector “|¢))” of dimension d = 2" (e.g. by
sampling complex Gaussians are described in the previous lecture).

2. Prepare n qubits in the state [¢).

3. Put the state in a box.

Note that this procedure is not something that can be carried out efficiently: this is because
sampling a Haar random vector takes time 2", which is huge for non-small n. As discussed last
time in lecture, constructing a Haar-random n-qubit state requires exponentially large quantum
circuits, so that also takes a large amount of resources. However now are not concerned with
efficiency; we are interested in the question of how we mathematically describe the state of the box
(before we open it).

Let o describes the density matrix of the state in the box. What is more subtle now is that we
are sampling |1) from a continuous distribution, so it’s not obvious how to describe it as a convex
combination of a finite number of pure states. We can instead describe o as an integral over S(C?)
(which recall denotes the set of unit vectors in C%):

o= [lo)wlav

where di) denotes Haar measure on S(C%).

If you're worried about what it means to take an integral over density matrices, one can think of
o as the limit of density matrices
1
ge=mmr D )W

[NVel ) ENe

where N, denotes a finite discretization of the sphere S(C?) (e.g. every point on S(C?) is within e
of a point in N, and “covered” by the same number of points in N).

Interestingly, o = p (the density matrix from Scenario 1) and we shall see this by the definition of
Haar measure.

Claim 1.
o= [l =21

Proof. First we show that ¢ is unitarily invariant, i.e. for all unitaries U, UcU' = 0.

UUUT=/U!¢><¢|U*d¢=/|w><w|dw=a

where in the second to last equality we use the definition of a Haar random state, specifically that
|4) ~ Haar(d) = Ul) ~ Haar(d). Thus for all unitaries U, Uo = oU. For all A € C¥*? A
can be written as a linear combination of unitary matrices (refer to this link), Ao = g A. It is left
as a question in Problem Set 2 to show that ¢ is thus a multiple of the identity matrix I. Since
Tr(o) = 1, we have 0 = 27"]. O

According to this calculation, a Haar-random state does not differ from a random classical bitstring.
We will see that the difference between Haar-random quantum states and random classical states
only become apparent when you consider more complicated scenarios.


https://math.stackexchange.com/questions/1710247/every-matrix-can-be-written-as-a-sum-of-unitary-matrices

2.3 Scenario 3: another random state with classical randomness

Consider the following procedure:

1. Sample a random string = € {0,1}"
2. Prepare 2n qubits in the state |z, z)

3. Put the 2n qubits in a box

Let p/ denote the density matrix of the state in the box:

P/: Z 2_n|$,1’><l’,$|

ze{0,1}m

Note that this is different from the mazimally entangled state \/% >_ze{0,1}n [T, ), which is a pure
state.

Note also this is not the maximally mixed state on 2n qubits (i.e. dimension 22" x 22); that would

be written as
272 N fa )yl
z,y€{0,1}"

Further, there are no non-zero off-diagonal entries in p’ (if we write the entries of p’ in the standard

basis) meaning that it represents a classical mixture of states.

2.4 Scenario 4: another random state with quantum randomness

Consider the following procedure:

1. Sample a classical description of a Haar random vector “|¢))” of dimension d = 2" (e.g. by
sampling complex Gaussians are described in the previous lecture).

2. Prepare 2n qubits in the state |1) ® |1¢).

3. Put the state in a box.
Let o’ describes the density matrix of the state in the box. Again, we can describe o’ with a integral
over S(C%):

2
o = [

This is a 2n-qubit density matrix (i.e. it has dimension d? x d?). What are the properties of this
matrix? What are its entries? To determine o', we now need to discuss the symmetric subspace.



3 The Symmetric Subspace

Definition 2. For positive integers d, k, define the symmetric subspace, denoted as Sym(d, k)
Sym(d, k) = span { [1)#* | v) € €1} € (€

Let PP™ be the projector onto Sym(d, k).

We shall first show that Sym(d, k) is in fact a proper subspace of (C?)®* with the following claim.
Claim 3. PP £ 1

Proof. Tt suffices to show one counter-example: [0,1) — |1,0) ¢ Sym(d,2). To see this is true,
consider any |¢) € C%, we have

(¥, 9] (10,1) = [1,0)) = ([0} (¥[1) — ([1) (¥]0) =0

. Now consider a vector |#) € Sym(d,2); by definition this is a linear combination of states of the
form

10) = Zai\i/}i) ® [i)
where a; € C and |¢;) € C?. Then we have
(O (10,1) = [1,0)) = > (W] @ (8]} (10, 1) =[1,0)) = 0.
This shows that |0,1) — |1, 0) is orthogonal to Sym(d, 2). O

Another relatively straightforward claim is as follows.

Claim 4. o' = [ [¢)(4|®? ¢ is supported on Sym(d, 2).

Proof.
piro = [ ot as = [ ap =
O

In fact, o’ is a multiple of P}%". The following claim requires representation theory that will not
be covered in this class, so it is stated without a proof.

Theorem 5. sym
/ Pd,2
0= sy -
Tr(P, d,2 )

Nevertheless, we will be able to specify Tr(P},") by specifying a set of orthogonal basis of Sym(d, k).
Before doing so, we shall give an equivalent definition of Sym(d, k).



Definition 6. For a permutation T € S, define the unitary R, acting on (CH®* such that Ry|i1)®
@ |Yk) = Y1) @0+ @ [Vry) where 1) € C9 fori € [k]. Define

Sym(d, k) = {v e (CH®* | Rv=v V¥ 7 € S;}
In other words, Sym(d, k)’ is the set of all vectors (not necessarily unit length) on k registers, each
register of dimension d, such that permuting the k registers leaves the vector invariant.
We verify that Sym(d, k)" forms a subspace: if v, w € Sym(d, k)’, then for all permutations m € S,
R:(v+w)=Rpv+Rrw=v+w.
Therefore v + w € Sym(d, k)’
Claim 7. Sym(d, k)" = Sym(d, k)

Proof. The direction Sym(d, k) C Sym(d, k)’ follows directly through definitions. The other direc-
tion is more involved. Interested readers can refer to [Harl3]. O

With this equivalent definition, we can give a characterization of the projector P;};cm.

Claim 8. P;)" = & >ores, B

Proof. Let 11 = % Y orc s, Fx. Using the definition of R, one can directly verify that II is Hermitian
and II1? = I, and thus II is a projector. For every m € S, one can verify that R.II = II, which
implies Im(II) C Sym(d, k). Finally, for every |0) € Sym(d, k), it is evident that II|0) = |6), which

implies that Sym(d, k) C Im(II), and thus Sym(d, k) = Im(II). O

3.1 Examples and nonexamples of states in the symmetric subspace

The following states are examples of states in the symmetric subspace:

1. 10,0) € Sym(2,2)
2. 7( )11 ) € Sym(2,2)
3. 7( +]10) ) € Sym(2,2)

1. L5100y - \11>) € Sym(2,2)
States that are not in the symmetric subspace:

1. 10,1) ¢ Sym(2,2)
%001) - \10>> ¢ Sym(2,2) .

This second state is in what’s called the anti-symmetric subspace, because if you swap the two
registers (i.e. apply R, for m = (12)), then you obtain a minus sign:

RW\}?OOD - 110>) - —\}i(m) - \1o>) .



3.2 Orthogonal basis for Sym(d, k)

Definition 9. (Symmetrization) Fiz orthogonal basis |1),]2),...,|d) for C?. Consider a d-tuple
t = (t1, - ,tq) € N such that E;-lzl ti =k, and the state |1) = [1)%7]2)®2 ... |d)¥*. We can
"symmetrize” 1) by the following procedure. Consider the set

k
St ={(s1, 50, i) € [ | S 1fsi = j] =1, ¥ j € [d]}
=1

Intuitively, givent = (t1,--- ,tq), t; specifies the number of copies of |j) in|vY), and each (s1, 52, ,sk) €
St tg) Will assign t; registers out of all k possible registers for |j), i.e. s; € [d] specifies that the
i-th register is |s;). Then the symmetrization of ) is

> |51) ® |s2) ® - @ |sg)

(s1,52,,5K)ESt

Denote ||t ,tq)) as the symmetrization of |1)®"]2)®2 ... |d)®",

Theorem 10. {||t1,- - ,tq)) | (t1,--- ,tq) € Nd,zgzl tj = k} forms an orthogonal basis for
Sym(d, k).

Proof. Tt’s straighforward to verify that the elements in the set are in Sym(d, k). By noting that
two elements |[[t1, -+ ,tq)) and ||}, -+ ,t3)) must differ at some j such that ¢; # ¢}, it follows that
the elements pairwise orthogonal.

To show that the set spans Sym(d, k), consider any k-tuple a = (ay,as,- - - ,ax) € [d]* and the state
[Va) = |a1) @ |az) @ - -+ @ |ag). We have that {|¢,) | @ = (a1,a2, - ,ax) € [d]*} spans (CH)k. Tt
requires a bit reasoning to verify that

1
P§7y]€m|¢a> = Z Relthe) = Cllt1, -+ ,ta))
’ TESE
where t; = """ | 1[a; = j] and C is a normalization factor. This observation completes the proof.

O

Example 11. Consider d = 2,k = 3 and the basis states |1),]2). The following states form a
orthogonal (not normalized) basis for Sym(2,3).

13,0)) = 1) @ |1) @ 1)
12,1) = eh)e2)+2)el) ) +[1)e2)@ 1)
11,2)) =) @2)®2) +[2) @ 1) @[2) +[2) ® |2) @ [1)
10,3)) = 10) @10) ® |0)

With a combinatorics argument considering the number of ways to put k indistinguishable balls
into d distinguishable boxes, one can arrive at the following corollary.

Corollary 12. dim(Sym(d, k)) = (’”Z*l)



Finally, we can answer the initial question about o’.

Corollary 13.

ktd—1\" om 1
/WW‘@Q(W_( K > P = DGy hrdoD 2

TESK

A proof of this can be found in [Wat1§].
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