
Frontiers of Quantum Complexity and Cryptography Spring 2022

Lecture 7 - Learning Unitaries

Lecturer: Henry Yuen Scribes: Yiming Lin

1 Overview

Now we switch gears to talk about a task called learning unitaries, and it’s uses what we talked
about in the previous half of the lecture: those quantum programs, as a sub routine. This is
motivated by the the following classical analogue.

2 Classical Analogue

Let’s say we want to learn a boolean function F : {0, 1}n → {0, 1}n, and we only have black box
access to this function: we input x, and we get F (x). We would like to learn how it behaves on
any input x. If F is completely arbitrary, the only thing we can do is to query this black box every
single x possible, requires 2n queries.

3 Quantum Analogue

Now, instead of having a function F , let’s have an arbitrary n-qubit unitary U . It cannot be easier
to learn an arbitrary unitary because this unitary is even more general than a function, but let’s
do something slightly different. What if we want to learn the behavior of this arbitrary unitary on
a small dimensional subspace?

Goal: learn behavior of U on a small-dimensional subspace. Specifically, we have the following
two phases.

Learning Phase: There is an underlying, unknown unitary U . We’re given the following samples:

• Input samples: |θ1〉, |θ2〉, . . . , |θK〉 .

• Output samples: U |θ1〉, U |θ2〉, . . . , U |θK〉 .

In fact, we are given multiple copies of each input/output sample.

Prediction Phase:

• Given a single copy of an unknown input sample, |ψ〉 ∈ span{|θ1〉, |θ2〉, . . . , |θK〉},

1

• The goal is to output (an approximation of) U |ψ〉.

So the question is, when can we actually solve this? Normally in linear algebra, it is trivial to
compute the output of U |ψ〉, since we can write |ψ〉 as a linear combination of the input sample.
But in the quantum setting, this is not so easy. We’re giving these states in quantum form, and
we don’t actually “know” what those vectors are, in the sense of having a classical description of
them. In quantum physics, having the states in our hands is not the same as knowing them!

If we’re given an exponentially many copies of the input sample states, we can perform tomography
to get the classical description of the vectors and solve the linear algebra problem. We now try to
achieve this with only polynomial number of copies of these input samples.

4 Universal Quantum Emulator of Marvian and Lloyd

Marvian and Lloyd (the same Lloyd from Lloyd-Mohseni-Rebentrost) presented a solution for this
unitary learning problem.

Theorem 1 (Universal quantum emulator [1]). There exists a polynomial-time quantum algorithm
that for all unitaries n-qubit unitaries U , given input samples {|θ1〉⊗r, . . . , |θK〉⊗r}, and output
samples {U |θ1〉⊗r, . . . , U |θK〉⊗r}, and (a single copy of an) unknown state |ψ〉 ∈ span{|θj〉}, the
algorithm outputs a density matrix σ such that

D(σ, U |ψ〉〈ψ|U †) ≤ O
(
S2

r∆2

)
where r is number of copies of inputs/output samples, S is dimension of the span of the {|θ〉j}j,
and ∆ is the spectral gap of the following linear operator on the space of density matrices:

E(ρ) =
1

K

K∑
j=1

e−i|θj〉〈θj |π ρ ei|θj〉〈θj |π

.

Before we explain the linear operator E(·) and its spectral gap, we encourage the reader to take a
step back to appreciate how remarkable this algorithm is. The algorithm starts off knowing nothing
about this unitary U , which can be arbitrarily complex. Yet given a few quantum examples of inputs
and outputs for this unitary, the algorithm can emulate the behavior of U on inputs from the space
spanned by the input samples. Provided that the dimension of the subspace S is polynomial, the
spectral gap ∆ is not too small, and the number of copies of r is polynomial, then the algorithm
succeeds and is efficient.

Now let’s turn to the linear operator E(·) and its spectral gap. It’s an intimidating function, but
let’s figure out what it means. E is a function that takes input some density matrix ρ, and it’s
going to pick one of the |θ〉j at random, and apply the unitary e−i|θj〉〈θj |π to ρ. Note that e−i|θj〉〈θj |π

is a unitary matrix because the exponent is a Hermitian matrix. This can be interpreted as unitary
evolution corresponding to the Hamiltonian |θj〉〈θj | for time π.

Clearly E is a linear function of ρ. Since the space of matrices forms a linear vector space, we can
interpret E as a linear operator on this vector space. Thus E has eigenvalues; we can sort them by

2

λ1 ≥ λ2 ≥ · · · . The spectral gap ∆ is the difference ∆ := λ1 − λ2. We note that ∆ can be zero if
the largest eigenvalue occurs with multiplicity greater than 1.

For the universal quantum emulator algorithm to perform well, we want the spectral gap ∆ (which
is a number between 0 and 1) to be as large as possible. Intuitively, ∆ represents how well the
|θj〉’s span their subspace. A really bad (small) spectral gap would be if the |θj〉’s are all orthogonal
to each other. A good (large) spectral gap is when |θj〉’s redundantly span their subspace. Let’s
illustrate this with two examples.

Spectral Gap Example 1: Let’s consider the case of n = 1 (i.e. we’re dealing with a single-
qubit state). Let |θ1〉 = |0〉, |θ2〉 = |1〉. They are orthogonal, and span C2 . We now compute a
closed-form expression for the associated map E .

e−i|0〉〈0|π = I− 2|0〉〈0| =
(
−1 0
0 1

)
= −Z .

e−i|1〉〈1|π = I− 2|1〉〈1| =
(

1 0
0 −1

)
= Z .

E(ρ) =
1

2
((−Z) ρ (−Z)) +

1

2
(Z ρ Z) = ZρZ

We claim that there are two inputs that are orthogonal1 to each other that has eigenvalue of 1:

E(I) = ZIZ = I .

E(Z) = ZZZ = Z .

That means the identity matrix and the Pauli Z matrix (which are orthogonal to each other) are
eigenvectors of this linear map, and both has eigenvalue 1. Therefore the spectral gap ∆ = 0. Bad
case.

Spectral Gap Example 2: We consider a different set of states. Let {|θ1〉, |θ2〉, |θ3〉, |θ4〉} =
{|0〉, |1〉, |+〉, |−〉}. This set forms an overcomplete basis of C2 – it’s redundantly spanned. The
spectral gap of the associated E is non-zero. (Calculation details omitted during class).

Universal Quantum Emulator Algorithm. Let’s finally describe how the Universal Quantum
Emulator algorithm works. We won’t analyze it, as it is quite involved.

1For the vector space of complex matrices, the inner product between two matrices A and B is defined to be
〈A,B〉 = Tr(A†B).

3

Algorithm 1 Emulator({|θj〉⊗r}, {(U |θj〉)⊗r}, |ψ〉)
load |ψ〉 in register A
pick a sequence of indicies j1, . . . , jT ∈ [K]
for i = 1, . . . , T do

initialize register Bi (which is a single qubit) as state |−〉
run Circuit1 on registers Bi and A

end for
Swap U |θi〉 into register A
for i = T, . . . , 1 do

run Circuit 2 on Bi and A
end for
return the contents of register A

Circuit1:

Bi • H •

A Rin(θ1) Rin(ji)

Define Rin(j) = e−i|θj〉〈θj |π = I− 2|θj〉〈θj | (the reflection about θj)

Circuit2:

Bi • H •

A Rout(ji) Rout(θ1)

Define Rout(j) = I− 2U |θj〉〈θj |U †.

This algorithm is really remarkable; one of the reasons is that it does not resemble any other
quantum algorithm. In the world of quantum algorithms, there are a few templates: Grover search-
style algorithms and Quantum Fourier Transform-based algorithms (such as Shor’s algorithm). But
this algorithm is unlike any of those.

Intuition behind the Universal Quantum Emulator. We won’t analyze it formally because
it’ll take too long, but here some intuition of what it is trying to do. Basically, in the first for loop,
its reflecting input state |ψ〉 around the first input sample state |θ1〉, and then reflecting around a
randomly chosen input sample |θj1〉. It does this reflection controlled on an ancilla qubit in register
B1. It repeats this again, controlled on a new ancilla qubit in register B2, where the first reflection
is about |θ1〉 and the second reflection is about |θj2〉. It keeps doing this for a number of iterations.

At a high level, these reflection steps in the j’th step are roughly measuring the coordinates of |ψ〉
relative to the “frame” spanned by |θ1〉 and |θj〉. These coordinates are stored, in quantum form,
in the ancilla qubit in register Bj .

After a while, the register A contains no more information about the state |ψ〉; its identity has
been “erased” from register A and instead distilled into the ancilla qubits in registers B1, . . . , BT .
In other words, the qubits in registers B1, . . . , BT store information about how the input sample
|ψ〉 is oriented relative to the input samples |θ1〉, . . . , |θK〉. The register A will then contain an
approximation of the fixed input sample |θ1〉.

4

After the first “for” loop, we load U |θ1〉 into register A (swapping out the state |θ1〉 that’s sitting
there), and run everything in reverse: instead of using input samples, we use output samples. And
we’re taking all the information about |ψ〉 stored in the Bi registers and transferring it back to
register A, except now all the coordinates relative to the output samples {U |θj〉}j . In the end, we
get, not |ψ〉, but U |ψ〉.

The choice of |θ1〉 as the fixed point of this algorithm is arbitrary; in fact the original Marvian-Lloyd
paper suggests to pick one at random. This is because it is not guaranteed that |θ1〉 is well-spread
within other |θj〉.

How do we actually implement those controlled reflection gates? This is where we use the LMR
algorithm described in the first half of the lecture! These reflection gates takes as input the
samples |θj〉 and U |θj〉, and LMR can be used to approximate the reflection unitaries e−i|θj〉〈θj |π

and e−iU |θj〉〈θj |U
†π.

References

[1] Iman Marvian and Seth Lloyd. Universal quantum emulator, 2016. arXiv:1606.02734.

5

