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1 Constructing PRS from PRG

In order to show how a PRS can be constrcuted from a PRG, we introduce the notion of pseudo-
random functions(PRF).

Definition 1. A function F : {0, 1}m × {0, 1}n → {0, 1} is called a pseudo-random function if F
is computable in polynomial time, and for every polynomial time(perhaps quantum) distinguisher
D it holds that

|| Pr
k∼R{0,1}n

(DFk = 1)− Pr
f∼R{0,1}{0,1}

m
(Df = 1)|| ≤ neg

In the above, for every k ∈ {0, 1}n, Fk : {0, 1}m → {0, 1} is defined by Fk(x) = F (x, k), and Dg for
a function g denotes granting D oracle access to g.

Fact 2. A well known result in cryptography states that PRG and PRF are equivalent primitives.
In particular, if a PRG exists, so does a PRF.

The rest of the section focuses on proving the following theorem due to Ji, Liu, Song [JLS18].

Theorem 3. PRFs imply PRS.

We begin by describing the construction.

Construction. Let F : {0, 1}m×{0, 1}n → {0, 1}. We construct G : {0, 1}n → (C2)⊗m as follows.

1. By applying anH gate to each qubit, we prepare the uniform superposition state: 2−m/2
∑

x∈{0,1}m
|x〉.

2. Given k {0, 1}n, we compute Fk in superposition on the above state, to obtain |ψk〉 =
2−m/2

∑
x∈{0,1}m

(−1)Fk(x)|x〉.

3. Output |ψk〉.

We first note that each of the above steps can be executed in quantum polynomial time, as Fk is
computable in polynomial time. All that is left is proof of security. Namely we aim to prove the
following.

Claim 4. The ensemble {|ψk〉}k is indistinguishable from a Haar random state on m qubits, even
given poly(n) copies.
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Proof. Let D be a distinguisher and fix t = poly(n). The proof employs a hybrid argument.
Specifically, we examine D’s behaviour on 3 different distributions: The first is {|ψk〉}k, the second
would be an interpolation of {|ψk〉}k and Haar, and the third would be a random Haar state.
Formally, we consider the following experiments.

Experiment 1.

1. Sample a uniformly random k ∈ {0, 1}n.

2. Create t copies of |ψk〉.

3. Compute D(|ψk〉⊗t) and output the result.

Experiment 2.

1. Sample a random function f : {0, 1}m → {0, 1}. It is helpful to think of this step as being
executed by a third party, and not the distinguisher.

2. Generate t copies of |ψf 〉 = 2−m/2
∑

x∈{0,1}m
(−1)f(x)|x〉. Denote the vector of coefficients by α,

with αx = (−1)f(x).

3. Compute D(|ψf 〉⊗t) and output the result.

Experiment 3.

1. Sample a random Haar state |θ〉.

2. Compute t copies of |θ〉

3. Compute D(|θ〉⊗t) and output the answer.

Notice that our overarching goal is to show that the distributions produced by experiments 1(Exp1)
and 3(Exp3) are close, we do this by showing that experiment 1 is close to experiment 2(Exp2),
and experiment 2 is close to experiment 3.

Observation 5. ||Exp1 − Exp2||1 ≤ neg.

The above holds from the assumption that F is a PRF.

All that is left to is to show that ||Exp2−Exp3||1 ≤ neg. We actually show that these distributions
are close regardless of the chosen distinguisher, i.e. we bound the trace distance between the state
distributions.

Specifically, we show that

||E
f
|ψf 〉〈ψf |⊗t − E |θ〉〈θ|⊗t||1 ≤ O(

t2

2m
)
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First, we recall that E |θ〉〈θ|⊗t =
ΠM,t

sym

Tr(Π)
where M = 2m and the nominator is the projector onto the

symmetric space as we saw in previous lectures. When the parameters are clear from context, we
refer to this operator as Π.

|ψf 〉⊗t = 2−mt/2
∑

x1,...,xt

αx1 ...αxt |x1, ..., xt〉

Define:

|σ〉 = 2−mt/2
∑

x1,...,xt,all distinct

αx1 ...αxt |x1, ..., xt〉

Notice that both of the above states have mt qubits. In |σ〉, we sum over all t-tuples of strings of
length m that are pairwise distinct, denote this set by Sm,t.

With |σ〉 in mind, we notice the following and leave the proof as an exercise. Note that this claim
essentially boils down to the question: Given t uniform random strings of length m > n, what is
the probability that two of them are the same? If t = poly(n), the probability is vanishingly small.

Claim 6. |||ψf 〉⊗t − |σ〉||1 ≤ O( t
2

2m )

Thus, all that is left is to show that ||Ef |σ〉〈σ| − Π
Tr(Π)

||1 ≤ O( t
2

2m )

We start with

E
f
|σ〉〈σ| = 2−mt

∑
x,y∈Sm,t

E[αx1 ...αxtαy1 ...αyt ]|x1, ..., xt〉〈y1, ..., yt|

Fix x, y, and note that the value of E[αx1 ...αxtαy1 ...αyt ] can be deduced very easily. If (x1, ..., xt) is
a permutation of (y1, ..., yt) then the expression equals 1, and otherwise at least one xi is different
from all strings in x, y and thus αxi will be 1 half the time and −1 half the time, which averages
to 0. Thus we can continue:

2−mt
∑

x,y∈Sm,t

E[αx1 ...αxtαy1 ...αyt ]|x1, ..., xt〉〈y1, ..., yt| =

2−mt
∑

x∈Sm,t,π∈Symt

|x1, ..., xt〉〈xπ(1), ..., xπ(t)| = 2−mtA(
∑

π∈Symt

Pπ) = 2−mtt!ΠAΠ

In the above Symt is the symmetric group on t elements, A =
∑

x∈Sm,t

|x1, ..., xt〉〈x1, ..., xt|, and Pπ

is the permutation matrix defined by π. The last transition is due to AΠ = ΠA.

Now all that is left is to show that ||2−mtt!ΠAΠ − Π
Tr(Π)

||1 ≤ O( t
2

2m ). We note that the LHS

is at most 2−mtt!||ΠAΠ − Π||1 + |2−mt − 1/
(

2m+t−1
t

)
| ≤ O( t

2

2m ). The last transition is left as an
exercise to the reader, and might appear in the homework assignment. This concludes the proof
that ||Exp2 − Exp3|| ≤ neg and thus ||Exp1 − Exp3|| ≤ neg which proves that G is a PRS, as
required.
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