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1 Overview

In this lecture we are going to discuss the quantum analog of a pseudo-random generator (PRG).

2 Review - Classical PRG

A PRG is a function G that takes as input a uniformly random key k ∈ {0, 1}n and outputs a
string G(k) ∈ {0, 1}m, with m > n, such that G(k) looks indistinguishable from a random m-bit
string from a polynomial verifier’s point of view.

k
∈{0,1}n −→ G −→ y

∈{0,1}m

Formally:

Definition 1 (Classical PRG). G : {0, 1}n → {0, 1}m is a PRG if it is polynomial-time computable,
and for all polynomial time distinguishers D the following holds:∣∣ Pr

k∼Un
[D(G(k)) = 1]− Pr

y∼Um
[D(y) = 1]

∣∣ ≤ negligible(n)

where Un is the uniform distribution over {0, 1}n, and negligible(n) is any function that goes to
zero faster than any polynomial. That is, f ∈ negligible(n) if limn→∞ f(n) ·nc = 0 for all constants
c.

The difference m− n is called the “stretch”.

This definition captures the intuition that it should essentially be impossible to distinguish between
G(k) and a random y.

Notes and Observations

• Time restriction of D is necessary. Otherwise, there is not such thing as a PRG, since D can
run on all possible inputs k in exponential time.

• We believe PRG exist, but we actually do not know for sure. If we did prove their existence,
P 6= NP would follow. In fact, virtually all of classical cryptography would imply the
existence of a PRG.

• The stretch (m − n) can be any poly(n), and in fact we can show that a classical PRG of
stretch 1 can be amplified to a PRG of stretch poly(n) for any poly(n).
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• In post-quantum cryptography (PQC), we assume the distinguisher D can be quantum. So
a PRG in PQC is even stronger.

3 Pseudo-Random States (PRS)

We now discuss a quantum analog of a PRG.

Here we demand that several (t) copies of |ψk〉 are indistinguishable from t copies of a Haar random
states, from the point of view of a poly-time distinguisher.

k
∈{0,1}n −→ G −→ |ψk〉

∈(C2)⊗m

Definition 2 (PRS). A function

G : {0, 1}n → S
(
(C2)⊗m

)
is a PRS generator if it can be computed in polynomial time, and for all t = poly(n), for all
poly-time distinguishers, D,

∣∣ Pr
k∼Un

[
D(|ψk〉⊗t) = 1

]
− Pr
|θ〉∼Haar(m)

[
D(|θ〉⊗t) = 1

] ∣∣ ≤ negligible(n)

Question Why do we care about t? t is important because of the no-cloning theorem. In
the quantum setting, it is possible to have two ensembles |ψ1〉 ∼ E1, |ψ2〉 ∼ E2 such that |ψ1〉 is
indistinguishable from |ψ2〉 but |ψ1〉⊗2 is distinguishable from |ψ2〉⊗2

Example 3.
E1 = {|0〉, |1〉}, E2 = {|+〉, |−〉}

The density of one copy is I/2 in both cases - they maximally mixed states. However, for two
copies, we can compute the densities matrices 1

2 |00〉〈00|+ 1
2 |11〉〈11| and 1

2 |+ +〉〈+ + |+ 1
2 |−−〉〈−−|

and observe that they are different.

As before, we observe that the polynomial-time restriction on D is necessary. This is because, with
unlimited resources (time and copies), we could run state tomography on both inputs. However, it
turns out that if we have t copies, where

2n < dim
(

Π2m,t
Sym

)
then there still exists an (inefficient) distinguisher.

Observation 4. Existence of a PRS implies BQP 6= PSPACE

Most people believe pseudorandom states exist. For example, because they follow from the common
belief that a classical PRG exists (we will show this in the second half of this class). The reverse
direction, however, is not known to hold.
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We also don’t know how to stretch (or even shrink!) a PRS. This is because chopping off qubits
from a state does not result in a pure state, as we will now see. This is a stark contrast with the
classical setting.

We make the following informal claim, and show that we can formalize it to argue both that it is
true and that it implies we cannot discard bits to shrink the PRS.

Claim 5. The output of a PRS G is highly entangled.

Formally, we measure entanglement of a m-qubit state |ψ〉, by measuring its purity across every
partition of the bits. In more precise terms, we can trace out subsets of the qubits, and obtain a
highly mixed state. Suppose we partition the qubits into two parts, A and B. Then, taking partial
trace, ρA = TrB(|ψ〉〈ψ|AB).

Definition 6 (purity).
purity(ρA) = Tr(ρ2A)

If ρA = |θ〉〈θ| (the density matrix of a pure state), then purity(ρA) = 1. In contrast, with a
maximally mixed state ρA = 1

dim(A)I, then we see purity(ρA) = 1
dim(A) � 1.

So intuitively, purity(ρA) being small implies |ψ〉 is highly entangled across the partition A : B.

We now make the previous claim more precise.

Claim 7. For a randomly chosen k, and for any fixed cut A : B of the qubits, purity(ρ
(k)
A ≤

negligible

Proof. Suppose not. Then we show there exists an efficient poly-time distinguisher D between |ψk〉
and a Haar-random state. This will be our contradiction, by definition of a PRS.

The distinguisher is as follows. It takes two copies |ψ〉AB, and discards the B part of both (essen-
tially drawing from the distribution of possible remaining A-states, independently). It then uses a
controlled-SWAP gate (a gate that swaps the inputs if the qubit is 1, while doing nothing if the
qubit is 0) on the remaining A-parts, controlled by a |+〉 qubit. This qubit gets entangled with the
two states, containing information about how different they are. The distinguisher then proceeds
to pass the control qubit through a Hadamard gate, then measures it in the {|0〉, |1〉} basis.

|+〉 • H

|ψ〉AB TrB

SWAP

|ψ〉AB TrB

where the TrB “gate” means just discarding the B bits.

We claim (without proof) that

Pr
[
D(|ψ〉⊗2) = 1

]
=

1

2
+

1

2
purity(ρ2A)
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In contrast, inputting a true Haar-random state |θ〉 instead, will give a probability of exactly 1
2 .

Thus, by assumption on ψAB being a PSR, it follows that purity(ρ2A) is negligible, and hence also
purity(ρA).
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