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1 Introduction to the Problem

When communicating information over possibly unreliable communication channels, the parties on
either end can use strategies to ensure that the message is relayed accurately. Sometimes this means
including redundant information which allows the receiver to check the accuracy of the message
and correct errors. An error correcting code is an algorithm which determines how the sender adds
redundancy to increase the likelihood that the receiver is able to deduce the correct message. There
are several genres of error correcting codes, but this article will focus on low-density parity check
(LDPC) codes. We start by making a few preliminary definitions and setting up our notation.

For the duration of this article, we will use the following notation:

• We assume that the classical sender is transmitting a message, r, comprised of n bits, r ∈
{0, 1}n. Likewise, a quantum sender will transmit a message |ψ⟩ ∈ {|0⟩, |1⟩}⊗n.

• We assume that the transmission channel introduces errors independently at random any-
where in the message and that there is an equal probability, which we will denote by p, of
changing 0 → 1 and 1 → 0.

• We will use length m for codewords.

1.1 Classical and Quantum LDPC Codes

There are several important definitions we must make before we can define an LDPC code (classical
or quantum). This section is a quick review of those definitions.

Definition 1.1. A block code for messages of n bits with block length m and distance d, (m,n, d),
is a genre of error correcting code. The block code encodes the original message into a “codeword”
called the block. In other words, a block code is an injective map

C : {0, 1}n → {0, 1}m,

where m is the block length of the code and r = n/m is the rate. The distance d is the minimum
Hamming distance between blocks for different messages,

d = min
m,m′

d(C(m), C(m′)).

Remark 1.2. The notation (m,n, d)q is often seen when working over a finite field of size q rather
than only over bits. This article suppresses the q.

Definition 1.3. A linear block code is a block code which has the property that for any collection
of messages {ri}i∈I , then any linear combination of elements in the collection {C(ri)}i∈I will also
be in the image of C. Typically we denote a linear code of length m by Fm

2 .
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Definition 1.4. The parity check matrix H of a linear block code C is a matrix such that
c ∈ {0, 1}m is in the image of C if and only if Hc = 0. The parity matrix will have dimension
m × k and there will be constraints that there are exactly a certain number, l, of 1’s in each row
and exactly a certain number, j, of 1’s in each column, with the added constraint that k > j.

The equations in the entries of c which arise through the condition Hc = 0 are called the parity
equations of the code.

Finally, with all of these definitions in place, we are ready to introduce the notion of a low-
density parity check code, which will be one of the two main focuses of this article.

Definition 1.5. A low-density parity check, or LDPC, code is a linear error-correcting code spec-
ified by a parity-check matrix which contains mostly 0’s and some 1’s with low density.

There are also quantum versions of each of the definitions above. We will quickly walk through
each of these, for clarity.

Definition 1.6. A quantum block code for messages of n qubits with block length m and distance
d, (t, n, d), is a block code on qubits. Formally, a quantum block code is an injective map

C : (S1)⊗n → (S1)⊗m,

where, as before, m is the block length of the code and r = n/m is the rate. The distance d is the
minimum Hamming distance between blocks for different messages,

d = min
m,m′

d(C(r), C(r′)).

Definition 1.7. A quantum LDPC code is a linear quantum block code specified by a collection of
local projection operators {Πi}i∈I . The local projectors act on a bounded (by a constant) number of
qubits in the full state, and each qubit admits actions by a bounded (by a constant) number of local
projectors. A state |ψ⟩ ∈ (S1)⊗m is a codeword when Πi|ψ⟩ = |ψ⟩ for each of the local projectors.

Equivalently, we can say that the codewords are groundstates of a sparse local Hamiltonian,
H = −

∑
j Πj.

An important point to note is that a quantum LDPC code can also be equivalently defined as
a pair of classical LDPC codes which satisfy an orthogonality condition H1H

∗
2 = 0 on their parity

check matrices H1 and H2.

1.2 Classical and Quantum Locally Testable Codes

Intuitively, we think about locally testable codes as error correcting codes in which it is possible to
determine whether a string is a word in the code by looking at a small number of bits.

Definition 1.8. [5] A classical code

C : {0, 1}n → {0, 1}l
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is (w, s)-locally testable if it has a parity-check matrix H ∈ Fm×l
q with rows of weight at most w

such that for all x ∈ Fl
q we have

1

m
|Hx| ≥ s

l
d(x, C)

Where d(x, C) := minx∈C d(x, c) is the minimum of the Hamming distances.

The expression 1
m |Hx| can be interpreted as the probability of rejection, meaning the probability

that the LTC determines that x is not a word in the code. The parameter w is called locality, and
we can think of it as a parameter which governs the sparsity of H. The parameter s is called
soundness, and it governs the linear rate of the probability of rejection relative to distance. The
equation above tells us that a code is locally testable when it has a parity check matrix so that the
probability of rejection grows linearly in 1

md(x, C).
One of the main motivations for studying classical and quantum LDPC codes is for the purpose

of creating locally testable codes. There are several practical and theoretical motivations for study-
ing locally testable codes. In practice, they are a computational tool that provide an extremely fast
probabilistic estimate of whether there are errors in a codeword. Quantum locally testable codes
are the result of an effort to establish similar tools in the quantum code setting.

Definition 1.9. [1] If C is a quantum code, defined as the groundspace of H =
∑

iΠi with {Πi} a
collection of local projections, then C is quantum locally testable if, for all δ > 0 and all |ψ⟩,

d(|ψ⟩, C) ≥ δn =⇒ 1

m
⟨ψ|H|ψ⟩ ≥ R(δ)

Here R(δ) is a function [0, 1] → [0, 1] which is fixed for a fixed code and d(|ψ⟩, C) = min|ϕ⟩ d(|ψ⟩, |ϕ⟩)
is a quantum version of normalized minimum distance.

1.3 Open Problems and Recent Developments

The paper by Panteleev and Kalachev [5] focuses on the following longstanding problem about
locally testable codes:

Question 1.10 (c3-conjecture/qLTC conjecture). Do there exist families of locally testable codes
of asymptotically constant locality, rate, and normalized minimum distance?

With this question, we really ask whether there exist families of codes which are asymptotically
good.

Definition 1.11. A family of codes C = {Cm} of type (m,n, d)q is asymptotically good when
r(C) = limm→∞(n/m) and δ(C) = limm→∞ d/m are both bounded below by constants strictly
greater than 0.

Their work establishes that there do exist such codes in the classical setting.
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Theorem 1.1. [5] For every R ∈ (0, 1/2) it is possible to find universal constants s and w such
that there exists a family of (w, s)-locally testable classical LDPC codes with the parameters (m,n ≥
Rm, d = Θ(n))q as m→ ∞

While they do not solve the quantum version, they do provide a partial result, about qLDPC
codes instead of qLTC codes:

Theorem 1.2. [5] For every R ∈ (0, 1/2) there exists an explicit family of qLDPC codes with
parameters (m,n ≥ Rm, d = Θ(m))q as m→ ∞.

The discussion in this paper will be an exposition of their results and methods. Their paper
was interesting because of the importance of the questions they answered, but also because the
methods were novel for the field. Hopefully resources which provide clear and thorough exposition
of the methods will help future researchers adapt these methods for their own problems.

2 Methods and Results

2.1 Overview

This section is a brief summary of the approach of Panteleev and Kalachev’s argument. The main
points are here, and the appropriate sections in the original paper are linked at each step.

1. Constructing the families:

(a) LDPC codes can each be represented in a natural way as a two-term chain complex,
with the parity check matrix as the boundary map:

A2
∂A−→ A1

B2
∂B−→ B1

Say ∂A := HA, ∂B := HB for parity check matrices HA and HB

(b) Use a tensor product construction to make a new chain (three-term) chain complex:

A2 ⊗B2
∂2−→ A1 ⊗B2 ⊕A2 ⊗B1

∂1−→ A1 ⊗B1

(c) Define the classical code as ker(∂2), and the quantum code by the kernel of ∂1 and
∂∗2 . This guarantees our quantum code will satisfy the orthogonality condition because
∂2 ◦ ∂1 = 0.

(d) The problem reduces to showing that HA and HB exist which allow our codes to meet
the properties in each of the theorems

2. Proof of the first theorem:
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(a) We consider an infinite family of Ramanujan graphs Xw−1,t and show that every one
of these graphs is edge-expanding with a fixed set of parameters (n0(t)/

√
w, 8

√
w) for

n0(t) = t(t2 − 1) = |V (Xw−1,t)|.
(b) Construct two codes with respect to this Ramanujan graph and two, for now arbitrary,

parity check matrices h and h′

(c) Represent these codes as chain complexes and take the tensor product chain complex to
be C. C is a three-term chain complex

C2
∂2−→ C1

∂1−→ C0

Our classical code is ker(∂2) = Z2(C).
(d) Show that there exist h and h′ such that

d
(1)
LM (C) ≥ n0(t)/2w

√
w

where c is locally minimal when |c+ ∂ax| ≥ |c| for x ∈ Ci+1 and a some coefficient

d
(i)
LM = min{|c||c ∈ Zi(C)− {0}, c locally minimal}

(e) Show that the product chain complex satisfies the condition d(Hi(C)) ≥ diLM (C) and
then use the following homological algebra lemma to conclude that

|∂c| ≥ min(d
(1)
LM (C), |c+ Z2(C)|)

Lemma 2.1. Let C be a chain complex over a local system then for every i ∈ Z,

d(Hi(C)) ≥ diLM (C)

then for every chain c ∈ Ci+1 such that |∂c| < diLM (C) we have

|∂c| ≥ d(c, Zi+1(C)).

(f) Finally, show that the above implies that

1

m
|∂c| ≥ w−7/2

2n
|c+ Z2(C)|

From this bound, we can show that the code is (2w, 12w
−7/2)-testable

(g) We show that the minimal distance of Z2(C) at least the minimal distance of one of our
codes, which is an expander

(h) We show that since the code is an expander, and therefore we can fix a sufficiently large
constant w such that d(ker(h)) > λ2(X

w−1,t) and therefore the minimal distance of the
associated code is Θ(n).
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3. Proof of the Second Theorem:

(a) Again construct an infinite family of graphs Xw−1,t which are (n0(t)/
√
w, 8

√
w)-edge-

expanding, with n0(t) = t(t2 − 1) = |V (Xw−1,t)|.
(b) As before, construct two codes associated to each Ramanujan graph, with parity check

matrices h and h′. Take their tensor product chain complex.

(c) Show that there exist h and h′ such that

d
(1)
LM (C) ≥ n0(t)/2w

√
w d

(1)
LM (C∗) ≥ n0(t)/2w

√
w

Where C∗ is the dual chain complex

(d) We consider the quantum code given by the pair of parity check matrices ∂1 and ∂∗2 .

(e) By defining n = dimC1, we show that

d(H1(C)) ≥ d
(1)
LM (C) > n

2w7/2

and
d(H1(C∗)) ≥ d

(1)
LM (C∗) >

n

2w7/2

and therefore d(Q) ≥ n
2w7/2 for our quantum code Q.

(f) For a suitable choice of R, we show that

dim(C0) < n(1−R)/2 dim(C2) < n(1−R)/2

and therefore dim(H1(C)) ≥ nR.

In the sections below, some of the key conceptual steps get a longer explanation.

2.2 Product Chain Complex Construction

A problem in constructing quantum LDPC codes from classical LDPC codes has been dealing with
the orthogonality condition. Phrasing the problem in terms of chain complexes provides a natural
way of understanding this condition.

We can phrase a classical code with parity-check H1 as a 2-term chain complex by setting the
boundary map ∂1 = H1. The parity check matrix can be considered a map from strings in the
block where the message is encoded Fn

q to the space of checks, which has some dimension m1, Fm1
q .

Fn
q

∂1→ Fm1
q

By adding another term, we can encode another set of checks which correspond to another
parity check matrix

Fm2
q

∂2→ Fn
q

∂1→ Fm1
q

In this case ∂∗2 = H2 for a second parity check matrix H2. In that case, the fact that this sequence
is exact implies that H1H

∗
2x = 0.
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Definition 2.2. We consider two two-term chain complexes A and B with boundary maps ∂A and
∂B, respectively. We assume that A is a right, free R-module and B is a left, free R-module. The
lifted product of A and B over R is the tensor product chain complex, defined by taking the tensor
product over R.

To clarify the notation a bit, we provide a bit more discussion of this tensor product construc-
tion.

Definition 2.3. For a ring R, a right R-module A and a left R-module B, the tensor product
A ⊗R B (read as “the tensor product over R”) is an abelian group which associates to elements
a ∈ A, b ∈ B an element a⊗ b ∈ A⊗R B which satisfies the relations

• a⊗ (b+ b′) = a⊗ b+ a⊗ b′

• (a+ a′)⊗ b = a⊗ b+ a′ ⊗ b

• (ar)⊗ b = a⊗ (rb)

Here r is an element of R.

Similarly, we formally define the tensor product chain complex.

Definition 2.4. For two two-term chain complexes A and B as above, A ⊗R B is the three-term
chain complex

A1 ⊗R B1
∂2−→ A1 ⊗R B2 ⊕A2 ⊗R B1

∂1−→ B1 ⊗R B2.

Where Ai, Bi are, respectively, the ith terms of A and B. The boundary maps are given by

∂2 =

[
−1⊗ ∂B
∂A ⊗ 1

]
and

∂1 =
[
1⊗ ∂B, ∂A ⊗ 1

]
such that ∂2 ◦ ∂1 = 0.

We can also define this notion with respect to a group G. In order to produce this construction,
we require the classical linear codes represented by our two chain complexes are G-invariant. We
will not discuss this extensively, but curious readers can look at [6] for the full condition. A lifted
product is a G-lifted product when R = FqG a group algebra over G.

Definition 2.5. The group algebra FqG is an algebra on the set of all linear combinations of
elements of G with coefficients in Fq. It is a group ring in the specialized case where multiplication
is abelian. There is a multiplication and addition on this underlying set, which the reader can find
described at

A natural question, faced with this construction, could be the following:

8



Question 2.6. What motivated the G-lifted product construction?

One basic point is that the G-lifted product construction allows us to define a tensor product
construction for two chain complexes. Since we need a two term chain complex to define a quantum
code, and we want to define the chain complex in terms of two classical codes, this is an important
step towards using the homological algebra construction to show anything about quantum codes.
However, up to this point, the fact that G is a group has not been necessary at all. This component
of the construction is a necessary when we begin to construct a family of codes of varying sizes. The
manner which this paper takes to construct families of acceptable codes is to take lifts of a smaller
code (see the next section). This construction needs extra structure to define the new parity checks
of the larger code, and that structure comes from a group G. With the addition of the group G to
the construction, we need the G-lifted product construction to produce a valid chain complex at
each level.

2.3 Expander graphs, lifts, shifts

Up to this point, we have not formally defined the Tanner graph of an LDPC code.

Definition 2.7. A Tanner graph associated to an LDPC code with parity check matrix H is a
pair of collections of vertices, {vi}ni=1 and {cj}mj=1 which correspond respectively to the columns and
rows of H, or, in other words, the codewords and the checks. There is an edge between vi and cj
whenever the hij entry in H is 1. There are no edges between vi’s or cj’s.

A Tanner graph can be used equivalently in exchange for the parity check matrix H to specify
the LDPC code. We can also use it to construct new LDPC codes by expanding it by a certain
factor. This principle arises from a much studied general graph-theoretic construction called graph
expansion.

Definition 2.8. Given a graph Γ = (V,E), we denote by n the size of the vertex set V , and label
the vertices 1, ..., n. We write the adjacency matrix of G as A(Γ) = {aij}ni,j=1 where aij = 1 if
(vi, vj) ∈ E and aij = 0 otherwise. A(Γ) has real eignevalues which we label as λ1 ≥ . . . ≥ λn.
We refer to an n-vertex d-regular graph with parameter λ as an (n, d, λ)-expander graph when
maxi ̸=1 |λi| ≤ λ.

We call Γ an expander graph because it is high connected. When λ2 ≤ 2
√
d− 1 + ϵ we say

the graph is Ramanujan. These graphs will be crucial to the construction in the proof. They are
widely used in graph theory because of the special property that their spectral gap is extremely
large. In fact, Ramanujan graphs are also very good expanders, because the Alon-Boppana bound
[4] tells us that for all d, ϵ > 0 there exists n such that all d regular graphs on n vertices have
λ(G) = maxi ̸=1 |λi| > 2

√
d− 1 − ϵ. The following collection of graphs will be important to the

argument.

Example 2.9. (Note, this is slightly different from Panteleev and Kalachev’s notation — they use
Xp,q for the non-bipartite version of this construction and X

p,q
for the bipartite version)

9



We construct a family of Ramanujan graphs Xp,q as follows: Here p and q are primes with
q > 2

√
p and both primes congruent to 1 mod 4, and with p(q−1)/2 congruent to 1 mod q. For more

detail on where these constraints come from, see [3]. Xp,q will be the (p+ 1)-regular and bipartite
graph with n = 2|G| vertices from a fixed graph G such that |G| = q(q2 − 1)/2 (for example,
G = PSL(F2

q). Specifically we construct this graph as the double cover of the Cayley graph of G.
This graph is constructed in more detail in [3]. In particular, they show that λ = mini ̸=1 |λi| ≤ 2

√
p

and λ2 ≤ 2
√
p. Furthermore, this graph admits a free action of G.

We can also define a lift of a graph.

Definition 2.10. An l-lift or an l-cover of a base graph Γ is a new graph Γ′ obtained by replacing
each vertex v in the original graph by l copies of that vertex v1, . . . , vl and each edge (v, v′) between
that vertex v and another vertex v′ by l copies of that edge (vi, v

′
π(i)) where v

′
π(i) is a corresponding

copy of v′ under a permutation of the indices. This permutation will be specified by some element
in G, such that v′i · g = v′π(i) and there may be a different permutation associated to each i. We
assume that G is abelian for convenience.

Definition 2.11. When the group G in an l-lift is a cyclic group, we refer to the lift as a shift
l-lift.

This concept was used earlier on to show the existence of a family of qLDPC codes with almost
linear distance [6]. There is a similar construction called the balanced product which was used to
obtain qLDPC codes with very large distances [2].
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