Week 8: The Quantum Fourier Transform

COMS 4281 (Fall 2025)

Admin

 $1. \ \ No \ worksheet/quiz \ this \ week.$

Last time

- Introduction to Quantum Fourier Transform
- Midterm

Last time

- Consider the Hilbert space \mathbb{C}^N with standard basis $\{|0\rangle, \dots, |N-1\rangle\}$.
- Discrete Fourier Transform F_N is a **unitary matrix** mapping standard basis $\{|0\rangle, \dots, |N-1\rangle\}$ to Fourier basis $\{|f_0\rangle, |f_1\rangle, \dots, |f_{N-1}\rangle\}$ where

$$|f_j\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega_N^{jk} |k\rangle$$

where $\omega_N = \exp(2\pi i/N)$ is the *N*'th root of unity.

- Let $|\psi\rangle = \sum_{j=0}^{N-1} \psi_j |j\rangle$ be a signal represented in the standard basis.
- In the Fourier basis, $|\psi\rangle$ can be written as $|\psi\rangle = \sum_{j=0}^{N-1} \hat{\psi}_j |f_j\rangle$ for some Fourier coefficients $\hat{\psi}_i$.

- Let $|\psi\rangle = \sum_{j=0}^{N-1} \psi_j |j\rangle$ be a signal represented in the standard basis.
- In the Fourier basis, $|\psi\rangle$ can be written as $|\psi\rangle = \sum_{j=0}^{N-1} \hat{\psi}_j |f_j\rangle$ for some Fourier coefficients $\hat{\psi}_i$.
- Given the amplitudes $\{\psi_0, \psi_1, \dots, \psi_{N-1}\}$, how to compute Fourier coefficients $\{\hat{\psi}_0, \hat{\psi}_1, \dots, \hat{\psi}_{N-1}\}$?

They are related by a *unitary* transformation F_N (which is the DFT). It maps $|j\rangle\mapsto|f_j\rangle$. The *inverse DFT* is F_N^\dagger , which maps $|f_j\rangle\to|j\rangle$.

Applying F_N^{\dagger} to $|\psi\rangle = \sum_{j=0}^{N-1} \psi_j |j\rangle$ yields the vector

$$F_N^{\dagger} |\psi\rangle = \sum_{j=0}^{N-1} \hat{\psi}_j F_N^{\dagger} |f_j\rangle = \sum_{j=0}^{N-1} \hat{\psi}_j |j\rangle.$$

The Fourier coefficients of $|\psi\rangle$ have been turned into amplitudes in the standard basis of $|\hat{\psi}\rangle$.

Let $N=2^n$. The **Quantum Fourier Transform (QFT)** is a quantum algorithm for implementing the n-qubit unitary F_N (technically, its inverse F_N^{\dagger}) while taking only poly(n) time.

QFT maps quantum states $|\psi\rangle$ to their Fourier transform state $|\hat{\psi}\rangle=\sum_{j}\hat{\psi_{j}}\,|j\rangle.$

Let $N=2^n$. The **Quantum Fourier Transform (QFT)** is a quantum algorithm for implementing the n-qubit unitary F_N (technically, its inverse F_N^{\dagger}) while taking only $\operatorname{poly}(n)$ time.

QFT maps quantum states $|\psi\rangle$ to their Fourier transform state $|\hat{\psi}\rangle=\sum_j\hat{\psi}_j\,|j\rangle.$

Here, we associate $|j\rangle$ with the *n*-qubit state $|j_1j_2\cdots j_n\rangle$, the binary representation of j.

The best classical algorithm for computing DFT of a N-dimensional vector is called the **Fast Fourier Transform** (FFT), which takes $O(N \log N)$ time.

Does this constitute an exponential speedup?

Not exactly. The Fast Fourier Transform gets an input that is a **classical** N-dimensional vector $|\psi\rangle$, and outputs another N-dimensional vector $|\hat{\psi}\rangle$.

On the other hand, QFT gets an input vector in **quantum form**, and produces an output vector in quantum form.

Not exactly. The Fast Fourier Transform gets an input that is a **classical** N-dimensional vector $|\psi\rangle$, and outputs another N-dimensional vector $|\hat{\psi}\rangle$.

On the other hand, QFT gets an input vector in **quantum form**, and produces an output vector in quantum form.

The Fourier coefficients $\{\hat{\psi}_j\}_j$ are not readily accessible: measuring $|\hat{\psi}\rangle$ produces basis vector $|j\rangle$ with probability $|\hat{\psi}_j|^2$, but afterwards all other information about the Fourier coefficients is lost.

Example: N = 2 (single-qubit unitary)

$$F_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} .$$

We've seen this before...

Example: N=4 (two qubits). Reordering the rows/columns according to $|00\rangle$, $|10\rangle$, $|01\rangle$, $|11\rangle$.

Example: N=4 (two qubits). Reordering the rows/columns according to $|00\rangle$, $|10\rangle$, $|01\rangle$, $|11\rangle$.

$$F_4 = \frac{1}{\sqrt{4}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & i & -i \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -i & i \end{pmatrix} .$$

Can you spot recursive structure?

Example: N=4 (two qubits). Reordering the rows/columns according to $|00\rangle$, $|10\rangle$, $|01\rangle$, $|11\rangle$.

$$F_4 = \frac{1}{\sqrt{4}} \begin{pmatrix} 1 & 1 & 1 & 1\\ 1 & -1 & i & -i\\ 1 & 1 & -1 & -1\\ 1 & -1 & -i & i \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} F_2 & A_2 F_2\\ F_2 & -A_2 F_2 \end{pmatrix}$$

where

$$A_2 = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

For general $N = 2^n$, if we order the columns where all the "even" columns are on the left, and all the "odd" columns are on the right, then

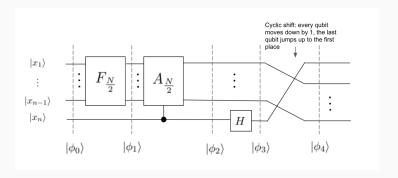
$$F_{N} = \frac{1}{\sqrt{2}} \begin{pmatrix} F_{\frac{N}{2}} & A_{\frac{N}{2}} F_{\frac{N}{2}} \\ F_{\frac{N}{2}} & -A_{\frac{N}{2}} F_{\frac{N}{2}} \end{pmatrix}$$

where

$$A_{N/2} = egin{pmatrix} 1 & & & & & & & \\ & \omega_N & & & & & \\ & & \omega_N^2 & & & & \\ & & & \ddots & & & \\ & & & & \omega_N^{N/2-1} \end{pmatrix}$$

The Fourier Transform circuit

The recursive formula for F_N inspires a recursive construction for the QFT circuit. Assume we already have circuits for the unitaries $F_{N/2}$ and $A_{N/2}$. Then the the circuit for F_N looks like



The Phase Circuit $A_{N/2}$

How is the circuit for $A_{N/2}$ implemented?

Note that the unitary acts on n-1 qubits, and for all $y \in \{0,1\}^{n-1}$ the unitary maps

$$|y_1,\ldots,y_{n-1}\rangle\mapsto\omega_N^{\mathrm{toint}(y)}|y_1,\ldots,y_{n-1}\rangle$$

where

$$toint(y) = y_1 2^{n-2} + y_2 2^{n-3} + \dots + y_{n-1}$$

The Phase Circuit $A_{N/2}$

Expanding and regrouping we get

$$|y_1, \dots, y_{n-1}\rangle \mapsto \omega_N^{2^{n-2} \cdot y_1} \omega_N^{2^{n-3} \cdot y_2} \cdots \omega_N^{y_{n-1}} |y_1, \dots, y_{n-1}\rangle$$

$$= \left(\omega_N^{2^{n-2} \cdot y_1} |y_1\rangle\right) \left(\omega_N^{2^{n-3} \cdot y_2} |y_2\rangle\right) \cdots \left(\omega_N^{y_{n-1}} |y_{n-1}\rangle\right)$$

The Phase Circuit $A_{N/2}$

It is just a tensor product unitary!

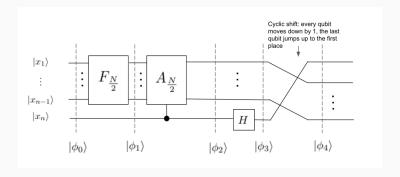
$$A_{N/2} = P(1/4) \otimes P(1/8) \otimes \cdots \otimes P(1/2^n)$$

where

$$P(\varphi) = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i \varphi} \end{pmatrix}$$

The Fourier Transform circuit

Complexity analysis: Let T(n) denote the number of gates used to construct F_N . It satisfies T(n) = T(n-1) + O(n). Unrolling the recursion, we get $T(n) = O(n^2)$.



Analysis of the Quantum Fourier Transform circuit

Why does it work?

It's a couple pages of algebra... take a look at the scribe notes, or in Nielsen/Chuang Chapter 5 if you're interested!

Next time

Phase Estimation, the RSA Cryptosystem, and Shor's Algorithm.