Quantum Information Basics

COMS 4281 (Fall 2025)

Admin

- 1. Pset0, Quiz1 due Friday Sept 12, 11:59pm.
- 2. Pset1 out this weekend.
- 3. Worksheet 1 out. Attend office hours!

Weekly quizzes

- On most weeks, there will be a Gradescope quiz to help you follow the class material. Released Monday morning, and must be completed by the following Sunday night.
- ullet Doable in \sim 15 minutes if you understand the class material to date.
- The quiz will be based on a weekly worksheet to help you practice. The TAs will go over the worksheet in office hours.
- Questions on the midterm/final will also be based on the worksheets.

Last Time: classical reversible computing

d-dimensional systems:

- State labels: $|0\rangle, \ldots, |d-1\rangle$.
- Transformations T: permutations on d labels

Last Time: classical reversible computing

d-dimensional systems:

- State labels: $|0\rangle, \ldots, |d-1\rangle$.
- Transformations T: permutations on d labels

Composite systems using tensor product:

• If system A in state $|x\rangle$, system B in state $|y\rangle$, then joint state is $|x\rangle\otimes|y\rangle$.

Last Time: classical reversible computing

d-dimensional systems:

- State labels: $|0\rangle, \ldots, |d-1\rangle$.
- Transformations *T*: permutations on *d* labels

Composite systems using tensor product:

• If system A in state $|x\rangle$, system B in state $|y\rangle$, then joint state is $|x\rangle\otimes|y\rangle$.

Can implement universal classical computation.

Last Time: classical reversible computing, linear algebra-ized

States represented as column vectors:

$$|0
angle = egin{pmatrix} 1 \ 0 \ dots \end{pmatrix} \quad |1
angle = egin{pmatrix} 0 \ 1 \ dots \end{pmatrix} \qquad \cdots \qquad |d-1
angle = egin{pmatrix} dots \ 0 \ 1 \end{pmatrix}$$

Last Time: classical reversible computing, linear algebra-ized

States represented as column vectors:

$$|0
angle = egin{pmatrix} 1 \ 0 \ dots \end{pmatrix} \quad |1
angle = egin{pmatrix} 0 \ 1 \ dots \end{pmatrix} \qquad \cdots \qquad |d-1
angle = egin{pmatrix} dots \ 0 \ 1 \end{pmatrix}$$

Transformations are $d \times d$ permutation matrices, e.g.,

$$T = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Last Time: classical reversible computing, linear algebra-ized

Updating a state $|x\rangle$ by transformation T is matrix-vector multiplication T $|x\rangle$.

Tensor product of vectors and matrices corresponds to combining states and transformations

Making the quantum leap

A **bit** is a classical system with *two* distinguishable states $|0\rangle$, $|1\rangle$, also called *Classical states*, or *standard basis states*.

A **qubit** (quantum bit) can be in a **superposition** of the classical states $|0\rangle\,, |1\rangle.$

Mathematically, states of a qubit are **complex linear combination** of $|0\rangle$, $|1\rangle$:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$= \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} \alpha \\ \beta \end{pmatrix}.$$

where $\alpha, \beta \in \mathbb{C}$ are complex numbers satisfying $|\alpha|^2 + |\beta|^2 = 1$. In other words, $|\psi\rangle$ is a two-dimensional unit vector in \mathbb{C}^2 . Example: a qubit can be in the state

$$rac{1}{\sqrt{2}}\ket{0}+rac{1}{\sqrt{2}}\ket{1}.$$

Another example:

$$\frac{1}{\sqrt{2}}\ket{0} - \frac{i}{\sqrt{2}}\ket{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}.$$

Another example:

$$\frac{1}{\sqrt{2}}\ket{0} - \frac{i}{\sqrt{2}}\ket{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}.$$

A non-valid qubit state:

$$i|0\rangle-\frac{1}{2}|1\rangle$$
.

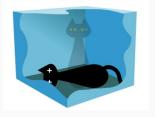
So what is a qubit

A qubit in the state $\alpha \ket{0} + \beta \ket{1}$ is commonly said to be $\ket{0}$ and $\ket{1}$ "at the same time". But what does that mean?



So what is a qubit

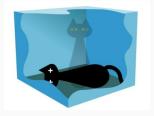
A qubit in the state $\alpha \ket{0} + \beta \ket{1}$ is commonly said to be $\ket{0}$ and $\ket{1}$ "at the same time". But what does that mean?



 α,β are like probabilities, except they can be negative or even complex numbers!

So what is a qubit

A qubit in the state $\alpha \ket{0} + \beta \ket{1}$ is commonly said to be $\ket{0}$ and $\ket{1}$ "at the same time". But what does that mean?



 α,β are like probabilities, except they can be negative or even complex numbers!

 α, β are called the **amplitudes** of the states $|0\rangle$ and $|1\rangle$, respectively.

The state of a qubit cannot be directly observed. It must be **measured**, yielding a classical state $|0\rangle$ or $|1\rangle$ with probabilities

$$Pr[observing |0\rangle] = |\alpha|^2$$

$$\Pr\big[\text{ observing } |1\rangle \ \big] = |\beta|^2.$$

The state of a qubit cannot be directly observed. It must be **measured**, yielding a classical state $|0\rangle$ or $|1\rangle$ with probabilities

$$\Pr \left[\text{ observing } |0\rangle \ \right] = |\alpha|^2 \qquad \qquad \Pr \left[\text{ observing } |1\rangle \ \right] = |\beta|^2.$$

Because qubit states have unit length, these probabilities add up to 1.

This formula is called the **Born Rule**.

After measurement, the system becomes **classical**.

The state of qubit **collapses** to either $|0\rangle$ or $|1\rangle$, and the previous state is lost.

In quantum mechanics, measurement generally disturbs the system.

After measurement, the system becomes **classical**.

The state of qubit **collapses** to either $|0\rangle$ or $|1\rangle$, and the previous state is lost.

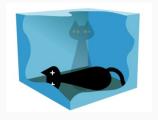
In quantum mechanics, measurement generally disturbs the system.

We represent qubit measurements using this diagram:

If the state collapses to the classical state $|0\rangle$ and we measure it again, it stays in state $|0\rangle$ with probability 1. Same with collapsing to $|1\rangle$.

Measuring a system twice is the same as measuring once.

Example: Schrödinger's cat



A box with two classical states:

sleeping cat: $|0\rangle$ awake cat: $|1\rangle$

Example: Schrödinger's cat

A box with two classical states:

sleeping cat: $|0\rangle$ awake cat: $|1\rangle$

In quantum mechanics, the box can be in a superposition of sleeping and awake cat, as long as you don't open the box (i.e. measure it).

Example: Schrödinger's cat

Suppose the box starts in the state $\frac{1}{\sqrt{3}}\ket{0}-i\frac{\sqrt{2}}{\sqrt{3}}\ket{1}$ and is measured.

- 1. With probability $\left|\frac{1}{\sqrt{3}}\right|^2=\frac{1}{3}$, the state collapses to $|0\rangle$ (i.e., sleeping cat).
- 2. With probability $\left|-i\frac{\sqrt{2}}{\sqrt{3}}\right|^2=\frac{2}{3}$, the state collapses to $|1\rangle$ (i.e., awake cat).

Transformations on qubits

In addition to measurement, the state of a qubit can change via a **unitary transformation**. Just like transformations in classical reversible computing, unitary tranformations can be represented as matrices.

We represent a unitary transform U acting on state $|\psi\rangle$ using the following circuit diagram:

$$|\psi
angle - U$$

Definition 1. The inverse of U is its Hermitian conjugate U^{\dagger} , pronounced "U dagger", whose (i,j)'th entry is the *complex* conjugate of the (j,i)'th entry of U:

$$U_{i,j}^{\dagger} = \overline{U}_{j,i}$$

Definition 1. The inverse of U is its Hermitian conjugate U^{\dagger} , pronounced "U dagger", whose (i,j)'th entry is the *complex* conjugate of the (j,i)'th entry of U:

$$U_{i,j}^{\dagger} = \overline{U}_{j,i}$$

Definition 2. U maps unit vectors to unit vectors (i.e. quantum states to quantum states)

Definition 1. The inverse of U is its Hermitian conjugate U^{\dagger} , pronounced "U dagger", whose (i,j)'th entry is the *complex* conjugate of the (j,i)'th entry of U:

$$U_{i,j}^{\dagger} = \overline{U}_{j,i}$$

Definition 2. *U* maps unit vectors to unit vectors (i.e. quantum states to quantum states)

Definition 3. The rows of U form an orthonormal basis for \mathbb{C}^d , and the columns form an orthonormal basis for \mathbb{C}^d .

Definition 1. The inverse of U is its Hermitian conjugate U^{\dagger} , pronounced "U dagger", whose (i,j)'th entry is the *complex* conjugate of the (j,i)'th entry of U:

$$U_{i,j}^{\dagger} = \overline{U}_{j,i}$$

Definition 2. *U* maps unit vectors to unit vectors (i.e. quantum states to quantum states)

Definition 3. The rows of U form an orthonormal basis for \mathbb{C}^d , and the columns form an orthonormal basis for \mathbb{C}^d .

Definition 4. U preserves the inner products between vectors: inner product between $|\psi\rangle$ and $|\theta\rangle$ is the same as the inner product between $U|\psi\rangle$ and $U|\theta\rangle$.

Identity matrix
$$I=\begin{pmatrix}1&0\\0&1\end{pmatrix}$$
 For all qubit states $|\psi\rangle$, $I|\psi\rangle=|\psi\rangle$.

Bit flip matrix
$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Bit flip matrix
$$X=egin{pmatrix}0&1\\1&0\end{pmatrix}$$
 .
$$X\ket{0}=\ket{1}\qquad X\ket{1}=\ket{0}$$

Bit flip matrix
$$X=egin{pmatrix}0&1\\1&0\end{pmatrix}$$
. $X\ket{0}=\ket{1}\qquad X\ket{1}=\ket{0}$

$$X(\alpha |0\rangle + \beta |1\rangle) = \alpha X |0\rangle + \beta X |1\rangle = \alpha |1\rangle + \beta |0\rangle$$
.

So far, have only seen classical transformations.

Phase flip matrix
$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Phase flip matrix
$$Z=egin{pmatrix}1&0\\0&-1\end{pmatrix}$$

$$Z\ket{0}=\ket{0}\qquad Z\ket{1}=-\ket{1}$$

Examples of qubit unitary matrices

Phase flip matrix
$$Z=egin{pmatrix}1&0\\0&-1\end{pmatrix}$$

$$Z\ket{0}=\ket{0}\qquad Z\ket{1}=-\ket{1}$$

$$Z(\alpha\ket{0}+\beta\ket{1})=\alpha\ket{0}-\beta\ket{1}~.$$

Examples of qubit unitary matrices

Hadamard matrix
$$H=rac{1}{\sqrt{2}}egin{pmatrix}1&1\\1&-1\end{pmatrix}$$

$$H\ket{0}=\cdots ({\sf do\ on\ board})\cdots$$
 $H\ket{1}=\cdots ({\sf do\ on\ board})\cdots$

Examples of qubit unitary matrices

Hadamard matrix
$$H=rac{1}{\sqrt{2}}egin{pmatrix}1&1\\1&-1\end{pmatrix}$$
 $H\ket{0}=\cdots (ext{do on board})\cdots$

$$H\ket{1} = \cdots \text{(do on board)} \cdots$$

H maps classical basis states $|0\rangle\,, |1\rangle$ into **quantum** superpositions.

What is the difference between

$$|+
angle = rac{1}{\sqrt{2}} \Big(\, |0
angle + |1
angle\, \Big)$$
 and

$$|-\rangle = \frac{1}{\sqrt{2}} \Big(\ket{0} - \ket{1} \Big)$$
?

What is the difference between

$$|+
angle = rac{1}{\sqrt{2}} \Big(\, |0
angle + |1
angle\, \Big)$$
 and

$$|-
angle=rac{1}{\sqrt{2}}\Big(\left.|0
ight
angle-\left.|1
ight
angle\,\Big)$$
 ?

Measuring both states yields the same statistical outcomes:

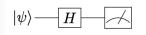
 $|0\rangle\,, |1\rangle$ with 50% probability each!

Suppose we were physically handed a qubit (say Schrödinger's box) whose state $|\psi\rangle$ was either $|+\rangle$ or $|-\rangle$. Is there a way we can tell the difference?

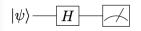
Suppose we were physically handed a qubit (say Schrödinger's box) whose state $|\psi\rangle$ was either $|+\rangle$ or $|-\rangle$. Is there a way we can tell the difference?

Opening the box (i.e., measuring) would yield a sleeping or awake cat with equal probability in both cases.





Solution: Apply *H* to qubit before measuring!

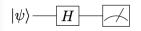


Solution: Apply *H* to qubit before measuring!

Case 1: $|\psi\rangle = |+\rangle$. Applying H, we get

$$H\ket{+}=\cdots$$
 (show on the board) $\cdots=\ket{0}$

Measuring yields $|0\rangle$ all the time!



Solution: Apply *H* to qubit before measuring!

Case 2: $|\psi\rangle = |-\rangle$. Applying H, we get

$$H\ket{-} = \cdots$$
 (show on the board) $\cdots = \ket{1}$

Measuring yields $|1\rangle$ all the time!

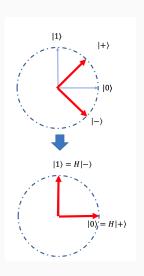
The states

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}$$

and

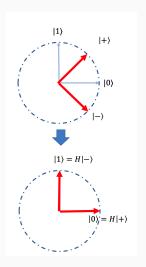
$$|-\rangle = rac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

form an orthonormal basis for \mathbb{C}^2 .



In quantum mechanics, orthogonal states can be **perfectly distinguished** by applying an appropriate unitary matrix and then measuring in the standard basis.

The Hadamard matrix maps the $\left\{ \left. \left| + \right\rangle, \left| - \right\rangle \right. \right\}$ basis to the standard $\left\{ \left. \left| 0 \right\rangle, \left| 1 \right\rangle \right. \right\}$ basis (and vice versa).



Takeaway: Minus signs in the amplitudes matter!

Takeaway: Minus signs in the amplitudes matter!

More precisely, **relative phases** between the classical basis states matter.

Takeaway: Minus signs in the amplitudes matter!

More precisely, **relative phases** between the classical basis states matter.

On the other hand, global phases don't matter.

There is no quantum process (unitary + measurement) to distinguish between $|\psi\rangle$ and $-|\psi\rangle$, or in fact $\alpha\,|\psi\rangle$ for any complex phase $\alpha=e^{i\theta}$. Can you see why?