COMS 4281 - Introduction to Quantum Computing

Fall 2025

Practice Worksheet 1 - Reversible Computing and Quantum Math

Problem 1: Reversible transformations

In class we covered how to take any boolean function $f: \{0,1\}^n \to \{0,1\}$ and convert it to its reversible equivalent R_f . Here we will convert a 2-bit function. Let $f: \{0,1\}^2 \to \{0,1\}$ be given by the truth table below.

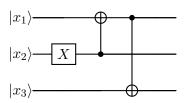
x_1	x_2	$f(x_1, x_2)$
0	0	1
0	1	0
1	0	0
1	1	1

So $f(x_1, x_2) = 1$ when the two input bit are equal otherwise known as $\neg XOR$ and define the reversible function (3-bit) by $R_f : (x_1, x_2, b) \mapsto (x_1, x_2, b \oplus f(x_1, x_2))$.

- (a) Fill in the truth table of R_f for each 3-bit input (x_1, x_2, b) then write the corresponding output.
- (b) Explain in a sentence why the mapping must be a permutation of $\{0,1\}^3$.
- (c) What is the inverse transformation of R_f ?

Problem 2: 3-bit Circuit to Truth Table

Below is a reversible circuit comprised of CNOT and X gates. It defines a reversible transformation on 3 bits. Write out the truth table of the transformation (i.e., what does every 3 bit input map to?).



Problem 3: Truth table to 2-bit circuit

Let $F:\{0,1\}^2\mapsto\{0,1\}^2$ be the reversible function given by the truth table below.

x_1	x_2	x_1'	x_2'
0	0	1	1
0	1	0	1
1	0	1	0
1	1	0	0

Construct the corresponding 2-bit reversible circuit using CNOT and X gates that implement F.

Problem 4: Matrix notation

Recall our convention for mapping the states $|0\rangle, |1\rangle$ of a bit to column vectors:

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

In class we discussed how we use the tensor product notation to describe the state of a composite system (e.g. a system consisting of multiple bits). For example, $|0\rangle \otimes |1\rangle$ describes the state of two bits where the first is in state $|0\rangle$, and the second is in state $|1\rangle$. When we translate to vector notation, however, we have to adhere to a convention. There are many possible conventions, but

notation, however, we have to agree to a convention. In the one we will use throughout class is the one where $|0\rangle\otimes|0\rangle=\begin{pmatrix}1\\0\\0\\0\end{pmatrix},\ |0\rangle\otimes|1\rangle=\begin{pmatrix}0\\1\\0\\0\end{pmatrix}$, and so

on. Furthermore we use the following abbreviations:

$$|a\rangle \otimes |b\rangle = |a\rangle |b\rangle = |a,b\rangle = |ab\rangle$$
.

Let

$$R = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} .$$

- (a) What is the 4-dimensional column vector corresponding to $R|1,0\rangle$?
- (b) What is the ket state corresponding to $R|1,0\rangle$?
- (c) What reversible circuit does R correspond to?