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1 Optimization and Combinatorial Optimization

Mathematical optimization refers to a class of problems that require us to find the most optimal solution

(in terms of a specific objective function) among a set of feasible solutions. These problems are of high

importance in a variety of fields including physics, engineering and economics, and there has been a great

amount of effort in deriving efficient algorithms to solve various types of optimization problems.

1.1 Optimization Problems

Definition 1 Let S be the domain of x. A mathematical optimization problem has the following form:

minimize f(x) subject to gi(x) ≤ 0, i = 1, . . . ,m

where x ∈ S is the optimization variable of the problem, the function f : S → R is the objective function and

the functions gi : S → R, i = 1, . . . ,m are the constraint functions.

Depending on the domain of the variable and the formulation of the objective/constraint functions, there

is a great number of branches in the studies of optimization problems, including the following:

• Convex optimization

• Integer programming

• Combinatorial optimization

In the rest of the paper, we will focus on the discussion of combinatorial optimization and the algorithms

to solve these problems.

1.2 Combinatorial Optimization

Definition 2 Combinatorial optimization is a process of searching for the maxima/minima of an ob-

jective function f : S → R where the domain of the function S is a discrete space.

Example (MAX-3-SAT): Suppose we have a set of variables X = {xi}, i = 1, . . . , n where xi ∈ {0, 1}.
Let a 3− SAT formula be ϕ(x1, . . . , xn) = C1 ∩C2 ∩ · · · ∩Ck where Cj = xj1 ∪ xj2 ∪ xj3 is a 3-literal clause

of the variables xj1, xj2, xj3, which are either variables in X or their negations. For simplicity, let

Cj(xj1, xj2, xj3) =

{
1 if Cj is satisfied by xj1, xj2, xj3

0 otherwise

Let f(x) =
∑k
j=1 Cj(x) be the objective function, then the optimization problem is defined as

max
x

f(x) where x ∈ {0, 1}n

In other words, this problems try to find the maximum number of clauses that can be satisfied by any

binary variable assignment over x′is.
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The decision version of this optimization problem is the following: is maxxf(x) = k, i.e. does there

exist a variable assignment x such that f(x) = k? The solution is ”yes” if and only if all the clauses in the

3− SAT formula are satisfied by some variable assignment. This problem is known as the 3-SAT problem,

which is NP-complete. This implies that MAX-3-SAT is also NP-hard, since solving MAX-3-SAT will give

a solution to 3-SAT directly.

A number of combinatorial optimization problems have been proven to be NP-complete, including Knap-

sack problem, travelling salesman problem, integer programming and etc. While many of them have wide

range of real-life applications, there’s no efficient algorithm that solves any of the above problems in poly-

nomial running time.

2 Quantum Speedups of Optimization Problems

2.1 Exponential Speedup of Solving Linear Systems

Inspired by the advantage of quantum algorithms against traditional algorithms in the problems including Si-

mon’s problem and Fourier transform, researchers are actively seeking for quantum speedups for optimization

problems.

For linear optimization, one of the fundamental problems is to solve the equation Ax = b in which

A ∈ Rn×n, b, x ∈ Rn. This is equivalent to solving the matrix inverse A−1, which takes running time of at

least O(N2.3) on classical machines. With some assumptions on the input format and small matrix condition

number, an algorithm was proven to solve the linear system in the running time of O(log(N)) [15], which is

an exponential speedup to the classical algorithms. More specifically, it gave an approximate solution in the

quantum form, which might not be convenient for all applications. Even though there are multiple limitations

of this algorithm to solve matrix inverse problems in general, it is believed that quantum algorithms do have

an advantage in a wider range of optimization problems.

2.2 Development of Quantum Speedup for Combinatorial Optimization

For general combinatorial optimization problems, there has been no exponential speedup algorithm found

using a quantum computer. Below is a brief illustration of the difficulties.

Consider the following problem:

Unstructured search problem: Suppose we are given a set of elements X = {x1, . . . , xN} and a function

f : X → {0, 1}. Our goal is to find an element x∗ ∈ X such that f(x∗) = 1.

This problem is the decision version of the combinatorial optimization problem

max
x∈X

f(x) = 1

and thus an exponential speedup of the unstructured search problem would lead to an efficient algorithm to

solve combinatorial optimization problems.

It has been proven that, even though Grover’s algorithm has a quadratic speedup from O(N) to O(
√
N),

this algorithm is optimal on a quantum computer. This indicate that no quantum algorithm would produce

an exponential speedup for a combinatorial optimization problem given a black-box function f(x). Although

there’s no room of development left for universal objective functions, researchers focused on the studies of

optimization problems with structured objective functions and came up with several approaches, including

quantum approximate optimization algorithm (QAOA), quantum annealing and adiabatic quantum opti-

mization (AQO). In this paper, we will focus on the analysis of the current work in the area of adiabatic

quantum optimization algorithms and their effectiveness.
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3 Adiabatic Quantum Optimization

3.1 Adiabatic Evolution

The idea of encoding the solution of a computational problem in the ground state of a quantum Hamiltonian

first appeared in 1989 [5], in the context of solving classical combinatorial optimization problems. It was

later renamed quantum annealing (QA) and reinvented several times, and served as an impetus to reconsider

a device to solve optimization problems by exploiting quantum evolution. The idea of adiabatic quantum

optimization (AQO) was thus raised [13], wherein a quantum computer solves a combinatorial optimization

problem by evolving adiabatically in its ground state. It turned out that adiabatic quantum computing is not

limited to optimization problems and that the computational power of the circuit model and the adiabatic

model of quantum computing are equivalent up to polynomial overhead. Both are universal for quantum

computing.[1]

While QA and AQO both solve computational problems via quantum evolution towards the ground state

of final Hamiltonians that encodes classical optimization problems, the evolution in QA is not necessarily

adiabatic or universal and is dependent on hardware. [19] In contrast, quantum adiabatic evolution, according

to Adiabatic Theorem (AT), guarantees that the state of the system will always track the instantaneous

ground state, provided the Hamiltonian varies ”sufficiently slowly”.

In quantum adiabatic computing, the computation proceeds from an initial Hamiltonian HB whose

ground state is easy to prepare, to a final Hamiltonian HP whose ground state encodes the solution to the

computational problem. The evolution of the quantum state is governed by a time-dependent Hamiltonian

H(s) = (1− s)HB + sHP

according to the Schrödinger equation

1

T

d

ds
|ϕT (s)〉 = −iH(s)|ϕT (s)〉,

where s : [0, T ] 7→ [0, 1] is the evolution schedule. Here we fix s by the linear interpolation function

s(t) = t/T ∈ [0, 1] so that T controls the rate at which H(s(t)) varies. Notice that s is T -independent. A

formal definition of quantum adiabatic computing [2] is given as follows:

Definition 3 (Adiabatic Quantum Computation) A k-local adiabatic quantum computation is specified

by two k-local Hamiltonians, H0 and H1, acting on n p-state particles, p ≥ 2. The ground state of H0 is a

product state. The output is a state that is ε-close in l2-norm to the ground state of H1. Let s(t) : [0, T ] 7→
[0.1] (the ”schedule”) and let T be the smallest time such that the final state of an adiabatic evolution

generated by H(s) = (1− s)H0 + sH1 for time T is ε-close in l2-norm to the ground state of H1.

3.2 Adiabatic Theorem

We consider the computation to be successful if, as s smoothly varies from 0 to 1, the evolution could

converge to the target ground state of H(s) with arbitrarily small error in polynomial time. Realizing a

quantum speedup over classical computation requires a careful analysis and choice of the adiabatic schedule

s(t) and the structure (e.g., smoothness) of the Hamiltonian. Here we are going to have a closer look at the

adiabatic theorem that essentially form the backbone of the adiabatic quantum computing, as it provides a

sufficient condition for the success of the computation and quantifies the nature of the slow variation. There

are many variants of the adiabatic theorem, with different assumptions and performance guarantees. All

rigorous versions of AT have the following essential assumption: the eigenvalues ε0(s) are always separated

from the rest of the Hamiltonian’s spectrum by a non-vanishing gap. Here the gap refers to the ground state

gap, i.e., the minimum eigenvalue gap between the ground state and the first excited state of H(s)

∆ = min
s∈[0,1]

∆(s) = min
s∈[0,1]

ε1(s)− ε0(s) > 0,

where εj(s) denote the eigenvalue of the instantaneous eigenstate |εj(s)〉 of H(s) and ε0(s) ≤ ε1(s) ≤ · · · .
We summarize a few of the significant results and refer the audience to the original literature for the details

and proofs.
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• Gap dependence of total evolution time The best gap dependence to date was given in [9].

Assuming that H(s) is bounded and infinitely differentiable and that H(s) belongs to the Gevrey class

Gα, i.e., the Hamiltonian is varied sufficiently smoothly, an error bound of o(1) can be ensured if the

total evolution time T scales as the square of the inverse gap.

• Arbitrarily small error It was proved in [14] that, with the assumptions of vanishing boundary

derivatives at s = 0, 1 and the Gevrey condition, the adiabatic error can be made exponentially small

in T at s = 1, if the total evolution time T � C2

∆3 for some constant C. Notice that in this version of

AT, the inverse gap dependence is cubic.

4 Failures of Adiabatic Quantum Optimization

We are interested in whether adiabatic quantum optimization can provide quantum speedups to solve NP-

complete problems over classical algorithms. In AQO, the eigenvalue of final Hamiltonian (hopefully the

ground state and thus the solution to the NP-complete problem) is determined by measuring the system

state, so the quantum algorithms give the answer probabilistically. We hope that the system converges to

the desired ground state with probability close to unity in polynomial time.

4.1 Minimum Gap and Quantum Speedups

According to the adiabatic theorem, the efficiency of a quantum adiabatic algorithm is limited by the spectral

gap ∆ between the two lowest-energy instantaneous eigenstates of the system Hamiltonian. Specifically, if

the instantaneous eigenvalue gap becomes exponentially small at any point in the evolution, the computation

time would grow exponentially. Bounding the minimum gap ∆ is one of the most fundamental problems in

adiabatic quantum computing, which is non-trivial and remains an open challenge.

Numerical simulations have raised examples of polynomially decaying gaps for some instances of NP-

complete problems [11, 20] as well as examples in which AQC takes exponential time and thus fails to

outperform classical algorithms [21, 8]. However, the scale of numerical simulations is constrained by the

problem size, since the computation grows (and the eigenvalue gap ∆ decreases) exponentially with the

system size, while classical algorithms do not suffer such a slowdown. Also, they provide little insight

to design efficient adiabatic quantum algorithms. It is more important to unveil the quantum evolution

black-box and to obtain insights to explain the slowdowns in the performance of adiabatic algorithms.

4.2 Mechanisms of Performance Slowdowns

We consider the formation of the minimum gap as is relevant to the strucutre of the problem and hope

to gain insights for designing efficient adiabatic algorithms through the study of the slowdown mechanisms

for AQC. Recall that an adiabatic algorithm is described using three variable components of the time-

dependent system Hamiltonian: (1) initial Hamiltonian HB ; (2) problem Hamiltonian HP ; (3) evolution

schedule s : [0, T ] 7→ [0, 1]. A different component can give a different adiabatic optimization algorithm

for the same problem. Poor choices for the initial Hamiltonians and final Hamiltonians could destroy the

structure contained in the cost function and result in algorithmic failure. A time-optimal evolution path for

adiabatic computing was suggested in [18, 17] and proven to have the power to improve the performance of an

adiabatic algorithm by increasing the dimension of the control parameter space. Furthermore, modification

on the initial and/or problem Hamiltonians help overcome the occurring of the exponentially small minimum

gap during the evolution due to anti-crossings as a result of a first-order quantum phase transition. [10, 6, 7]

Explanations and examples for each case have been summarized below:

• Poor choices for the initial Hamiltonian

Suppose that h(z) is a classical cost function to be minimized and is used to define a problem Hamil-

tonian diagonal in the z basis with a ground state subspace of dimension k: HP =
∑
z h(z)|z〉.
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If one chooses the initial Hamiltonian

HB = E(I− |s〉〈s|)

to be a one-dimensional projector onto the uniform superposition |s〉 over all basis states |z〉, then the

computational time

T ≥ b

E

√
N

k
− 2
√
b

E

where b = 〈ϕ(T )|P |ϕ(T )〉 > 0 is the success probability and P is the spectral projector onto the ground

subspace of HP . Regardless of the form of h(z), T/
√
N → 0 as N →∞. The adiabatic algorithm fails

because all |z〉 states are treated identically by HB , and any structure contained in the cost function

is lost. [12]

• Poor choices for the final Hamiltonian

Suppose that h(z) is a cost function to be minimized and π is a permutaion over the N computational

basis states such that hπ(z) = h(π−1(z)). Consider a problem Hamiltonian

HP,π =

N−1∑
z=0

hπ(z)|z〉〈z| =
N−1∑
z=0

h(z)|π(z)〉〈π(z)|

and the final Hamiltonian

Hπ(t) = HD(t) + c(t)HP,π

for an arbitrary π-independent HD(t) with |c(t)| ≤ 1 for all t.

If the algorithm succeeds with probability at least b for a set of εN ! permutations, then

T ≥ ε2b

16h∗

√
N − 1−

ε
√
ε/2

4h∗

where h∗ =
√∑

z h(z)2/(N − 1). It is impossible for the algorithm to find the minimum of hπ in time

less than order
√
N even for a fraction of a typical permutaion π. Even though hπ(z) and h(z) have the

same values, the relationship between the input and output is scrambled by the permutation, which

destroys any structure in h(z) and results in algorithmic failure. [12]

• Non-optimal evolution schedule

An adaptive adiabatic schedule that slows down as the gap decays, is an essential approach for a

quadratic speedup with adiabatic Grove algorithm [18]. The ideas of adaptive or locally optimized

adiabatic schedule rose from a variational time-optimal strategy for determining the interpolation of

Hamiltonian. It is optimal in the sense that it raises the shortest total evolution time T while guaran-

teeing that the final evolved state is close to the target final ground state. Consider the Hamiltonian

with a set of control parameters ~x(t) such that H(t) = H[~x(t)], and a parameterization of ~x(t) in terms

of s(t) with s(0) = 0 and s(T ) = 1. v = ds/dt characterizes the speed of motion along the control

trajectory ~x[s(t)]. The total evolution time is thus given by

T =

∫ 1

0

ds

v(s)
.

Define the Lagrangian

L[~x(s), ~̇x(s)] ≡ ‖∂sH(s)‖2HS
∆p(s)

(p > 0)

based on the form of the adiabatic condition, and the adiabatic-time functional

T [~x(s)] =

∫ 1

0

dsL[~x(s), ~̇x(s)].
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One can find the time-optimal curve ~xQAB(s) (the quantum adiabatic brachistochrone) by solving the

geodesic equation δT [~x(s)]/δ~x(s) = 0 [17]. The optimal path is a geodesic in the control manifold, so

as the gap becomes smaller, the curvature of the control manifold is higher, and the evolution schedule

slows down. It was shown that this reformulation using the time-optimal strategy can be recast in a

natural differential-geometric framework and improve the performance of adiabatic quantum algorithms

for which the gap (or estimate thereof) is known.

• First-order phase transition and perturbative crossings

During adiabatic evolution, an adiabatic quantum computer may go through a quantum phase tran-

sition (QPT). It was shown in [4] that a very small gap ∆, extremely sensitive to the Hamiltonian

parameters, may arise if the anti-crossing between the energy levels corresponding to the local and

global minimum is a result of a first-order QPT. A first-order QPT happens if the final Hamiltonian

has some low energy local minima with small Hamming distance between each other compared to the

global minimum. Perturbation theory indicates that the size of the minimum gap depends exponen-

tially on the Hamming distance between the two minima involved in the phase transition. On the other

hand, a first-order QPT and thus an exponentially small minimum gap may not occur if none of the

local minima has the above properties [4].

[3] demonstrated the problem of perturbative crossings close to the end of the adiabatic evolution and

thus the occurring of an exponentially small minimum gap, for random instances of the NP-complete

exact cover problem. They related the exponentially small minimum gap to Anderson localization of

the eigenfunctions of H(s) in the ground state space, and proved that the Hamming weight between

the two low-energy eigenstates can be Θ(n), which is problematic for the adiabatic algorithm. It

was also claimed that adiabatic quantum optimization failed with high probability close to unity for

large random instances of the problem and the failure did not rely on specific form of the problem

Hamiltonian for Exact Cover. However, the generality of the second claim was questioned and it was

shown later that the problem only occurs for one particular implementation of the adiabatic algorithm.

Farhi et al. [10] suggested that it is possible to overcome the exponentially small minimum gap

due to a first-order QPT by randomly modifying the adiabatic path, by keeping the same problem

Hamiltonian HP but choosing a random initial Hamiltonian HB . Repeating the procedure a number

of times polynomial in the problem dimension k (if the problem instance has k clauses) removes small

gaps near s = 1 with substantial probability. Changing the parameters in the problem Hamiltonian

(without modifying the problem instances) will also prevent the first-order QPT from occurring. [6, 7]

demonstrated that polynomial reduction of NP-complete problems might only preserve the solution

and alter the energy levels of the problem Hamiltonian. The minimum gap can be increased drastically

when the excited energy levels are changed.

5 A Short-Path Algorithm for Combinatorial Optimization

Despite the concerns in the previous section, we believe that a well-conditioned problem could be efficiently

solved by the adiabatic quantum algorithms. In this section, we focus on a specific combinatorial optimization

problem MAX-ED-LIN2 and present an algorithm [16] that solves it with better efficiency than the Grover’s

algorithm.

5.1 Problem Description

The problem is to find the ground state of a problem Hamiltonian HZ , assuming that the ground energy

E0 is known. For this specific problem, the following conditions of HZ are imposed for simplicity and the

validity of the algorithm:

• HZ is a weighted sum of products of Pauli Z operators, where each product has D operators on distinct

qubits. For instance, if D = 2, this Hamiltonian is an instance of the Ising model.
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• Each product has an integer-valued weight, and the sum of the absolute values of all the weights are

limited to a polynomial size of N , where N is the number of variables in the problem.

• If D is odd, we assume HZ has a unique ground state; otherwise, we assume that HZ has a doubly

degenerate ground state.

With the above assumptions about the problem Hamiltonian HZ , we can provide the following results

which would lead to an efficient algorithm to solve the ground state, either exactly, or with a good approxi-

mation.

5.2 Main Results

Denote Jtot as the sum of the absolute values of the weights of all the products in HZ , and W (E) as the

number of computational basis states with expectation value E for HZ .

Theorem 4 Assume that HZ follows the assumption above, and let B = −bE0 where b ∈ (0, 1),K =

C log(N) for some constant C. Then at least one of the following holds:

1. The algorithm finds the ground state in expected time

O(2N/2 exp [− b

2CD

N

log(N)
])

2. There is some probability distribution p(u) on the computational basis states with entropy at least

Scomp ≥ N(1−O(1)/C)

and with expected value of HZ at most (1 − b)E0 + O(1)JtotN2 C
2D2 log(N)2. Moreover, for any η > 0

and energy E such that

E ≤ E0 + (1 + η)(b|E0|+O(1)
Jtot
N2

C2D2 log(N)2)

we have

log(W (E)) ≥ N(1−O(1)
1 + η

η

1

C
)− 1 + η

η
O(log(N))

With the above theorem, we are able to derive an algorithm that satisfies the following corollary.

Corollary 5 Given HZ and E0, there’s an algorithm that outputs either of the following:

1. Approximate: it returns a state with energy at most E′ = E0 + 1.01(b|E0|+O(1)JtotN2 C
2D2 log(N)2)

with running time at most O(2O(1)N/C);

2. Exact: it returns the exact ground state of HZ with expected running time O(2N/2 exp [− b
2CD

N
log(N) ]).

Proof: Let η = 0.01, and run the algorithm below.

Step 1: Try repeated sampling of states to find a state with energy at most E′ by taking O(2O(1)N/C)

samples. If any sample succeeds, terminate the algorithm and return ”Approximate” and the corresponding

state. Assuming the correctness of part 2 in the above theorem, each sample would succeed with probability

2−O(1)N/C/poly(N), and thus the probability that there is one success in all the samples is at least 1− 2−N .

Step 2: If no sample succeeds in the previous step, run the short-path algorithm (described in the next

section) in parallel with a brute force search until one of them finds the exact ground state, and return

”Exact” and the corresponding state. Assuming the correctness of part 1 in the above theorem, the running

time of the short-path algorithm is O(2N/2 exp [− b
2CD

N
log(N) ]). Considering the low failure rate in step 1, we

match the expected running time of the algorithm in the corollary.
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5.3 Algorithm Description and Key Ideas

The Short-Path Adiabatic Algorithm

Step 1: Prepare the qubits in the state ψ+ = |+〉⊗N .

Step 2: Use the measurement algorithm to evolve the Hamiltonian Hs from s = 1 to s = 0 where

Hs = HZ − sB(X/N)K , X =
∑
i

Xi

Step 3: Measure the state in the computational basis and compute the value of HZ after the measurement;

if it is equal to E0, claim success and return the outcome of the measurement.

The measurement algorithm in the step 2 is where the adiabatic evolution takes place. Denote E0,s as

the ground energy of the Hamiltonian Hs, and δ = Ω(1/poly(N)) as the minimum gap of the ground states

of Hs and the rest of the spectrum.

The Measurement Algorithm

Step 1: Let ψ be the input state. Phase estimate ψ using H1. If the estimated energy is larger than

E0,1 + δ/2, then terminate the algorithm and return failure; otherwise continue.

Step 2: Adiabatically evolve ψ from H1 to H0.

Step 3: Phase estimate ψ using H0. If the estimated energy is larger than E0,0 + δ/2, then terminate the

algorithm and return failure; otherwise claim success and return ψ.

Key ideas: There are several new ideas over the typical adiabatic evolution algorithms:

• A ”short-path” is used in the evolution instead of a full evolution from the initial Hamiltonian to the

problem Hamiltonian.

If we compare the evolution Hamiltonian used in this algorithm

Hs = HZ − sB(X/N)K

with the typical adiabatic evolution Hamiltonian

H ′s = sHZ + (1− s)X

We observe that, Hs in this algorithm has a fixed term HZ since the start of the evolution, rather than

H ′s with zero weight on HZ when s = 0. Note that, the evolution schedule in this algorithm is to start

with s = 1 and end with s = 0, which is different from the usual schedules of adiabatic evolution.

• Instead of using a typical transverse field X as the initial Hamiltonian, a variation term −B(X/N)K

is involved in the adiabatic evolution to avoid small spectral gaps.

Suppose that there’s a small spectral gap in the evolution process. This indicates that there must be

a state with large expectation value of −B(X/N)K and small expectation value of HZ . For a large

exponent K in this term, this imposes a very strong constraint on the expectation value of X. Given

a large expectation value of X, it can be derived from the log-Sobolev inequality that the entropy in

the computational basis states is sufficiently large, and there must be many eigenstates of HZ with low

energy.
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5.4 Proof Ideas of the Algorithm

Consider the Hamiltonian QHsQ where Q projects onto the states of HZ with energy greater than E0.

Theorem 6 Consider the Hamiltonian QHsQ. Let EQ0,s be the ground energy of this Hamiltonian in the

subspace spanned by the range of Q. Assume that EQ0,1 ≥ E0 + 1
2 , and 〈0|B2(X/N)2K |0〉 ≤ 1

2 . Then

1. Hs has gap at least 1
2 between the ground and the first excited state;

2. Let ψ0,s be the ground state of Hs. We have

〈ψ+| ψ0,1〉 ≥
1

2
2−N/2(exp [

BN

(2DK +O(1/N3))|E0|
]−O(1))

1

poly(N)

Theorem 7 Assume that EQ0,1 < E0 + 1
2 ,K = C log(N) and B = −bE0 with b ≤ 1, C = Θ(1). Then there is

some probability distribution p(u) on computational basis states with entropy at least Scomp ≥ N(1−O(1)/C)

and with expected value of HZ at most

(1− b)E0 +O(1)
Jtot
N2

C2D2 log(N)2

Theorem 6 gives the result that, under the condition EQ0,1 ≥ E0 + 1
2 , the spectral gap in HZ is bounded,

which guarantees the nontrivial speedup of the adiabatic algorithm against Grover’s algorithm. On the other

hand, under the other case of EQ0,1 < E0 + 1
2 , Theorem 7 shows the existence of probability distributions

over computational basis states with high entropy and low energy, which is used to impose a lower bound

for W (E).

6 Conclusion and Future Development

Even though it has been proven that there’s no quantum algorithm that outperforms the Grover’s algorithm

for black-box combinatorial optimization, a nontrivial speedup has been found for the NP-hard problem

MAX-ED-LIN2, which either produces the exact solution or a good approximation to it.

There are several assumptions in the proof of correctness of the algorithm. For the degeneracy assumption

which limits the number of ground states of HZ , it can be removed by considering a slight variation of the

original Hamiltonian for the adiabatic evolution, which would lead to the same algorithm.

The other assumption is that all terms of HZ have the same degree D. This assumption has been used in

the proof that the adiabatic evolution has a high probability of success. If this assumption is removed, there

is no guarantee that the algorithm would still produce the exact solution with high probability. Therefore,

for problems without this assumption (e.g. MAX-3-SAT), it is not well understood if the algorithm works.

In the future development, the studies on the generalization of this algorithm would be the focus. It

might be hard to solve general combinatorial optimization problems through this short-path algorithm, but

it gives a good direction that these problems could be approached through the analysis on the distribution

of the low-energy states. Some sampling methods could help us understand these distributions and thus

indicate if there’s an efficient algorithm to solve any specific problem.
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