
Quantum Spectral Algorithms for Planted Clique

Deeksha Adil, Noah Fleming, Ian Mertz

1 Introduction
The Planted Clique problem has been intensely studied as a natural variant of the clique problem. It arose from
the work of Karp [Kar76] who asked whether there was a polynomial time algorithm for finding the largest
clique in an Erdős-Rényi random graph G(n, 1

2). It is well known that with high probability the largest clique in
a random graph has size (2 + o(1)) log n [GM75, BE76]. Simple heuristics find a clique of size (1 + o(1)) log n
in polynomial time with high probability [AKS98]. However, there is no known algorithm that finds a clique of
size (1 + ε) log n in polynomial time, for constant ε > 0. The Planted Clique problem is a natural variant of this
problem, introduced by Kurcera [Kuc95] and Jerrum [Jer92]. Instead of attempting to recover a large clique in a
random graph, one is asked to distinguish between the following two cases which occur with equal probability:

1. The input is a random graph G ∼ G(n, 1
2), or

2. The input is a random G ∼ G(n, 1
2) with a clique of size k added to a subset of its vertices.

This problem has been extensively studied but with limited algorithmic success. Based on the observation that
with high probability the largest clique in a G ∼ G(n, 1

2) is of size (2±o(1)) log(n), there is a quasi-polynomial
time algorithm for any k. Furthermore, when k = Ω(

√
n), computing the second highest eigenvalue of the

adjacency matrix is sufficient to find a planted clique with high probability [AKS98]. When k = Ω(
√
n log n),

the edge density of the clique is so large compared to the non-clique vertices that the greedy algorithm in which
one simply picks the vertices of largest degree dominates. However, when k lies between (2± o(1)) log(n) and
Ω(

√
n), polynomial-time algorithms seem far out of reach of current techniques.

Because of the lack of algorithmic progress, recent work has focussed on showing evidence of the hardness of
Planted Clique. Because of average-case nature of this problem it seems unlikely that one can obtain evidence of
the hardness of Planted Clique from standard complexity assumptions such as P ∕= NP. Therefore, a line of work,
beginning with Jerrum [Jer92], seeks to rule out natural families of algorithm for this problem. Jerrum showed
that for k = o(

√
n) a natural family of polynomial-time Markov Chains fails to find a planted k-clique. Feldman

et al. [FGR+17] generalized this result to hold for any statistical query algorithm (for a bipartite-version of the
planted clique problem), which capture many of the algorithms used in practice such as moments-based methods
and convex optimization techniques. Another prominent family of algorithms used in theory and practice is
semi-definite programs. Feige and Krauthgamer [FK03] showed that no polynomial-time algorithm based on the
hierarchy of semi-definite programs known as Lovász-Schrijver (LS+) could solve the Planted Clique problem
k = o(

√
n).

Recently, there has been significant effort to replicate the result of Feige and Krauthgamer for the stronger
Sum-of-Squares semi-definite programming hierarchy [DM15, HKP+18, MPW15, RS15]. This is motivated in
part by recent work showing that for the large and prominent class of constraint satisfaction problems (CSPs),
Sum-of-Squares provides the optimal approximation ratio of any polynomial time algorithm, provided that the
popular Unique Games Conjecture is true [Rag08]. Furthermore, most of the semi-definite programs arising in
practice can be phrased as a semi-definite program in the Sum-of-Squares hierarchy. Although the Planted Clique
problem is not a CSP, negative results rule out a very natural and powerful family of algorithms, giving strong
evidence for the hardness of this problem. This culminated in the work of Barak et al. [BHK+16], who showed
that any Sum-of-Squares based algorithm requires time nΩ(n) to solve Planted Clique when k = o(

√
n).

While Planted Clique is not known to be hard for all polynomial-time algorithms, many of known classical
algorithms can be phrased as one of the aforementioned paradigms. Thus this can be viewed as strong evidence

1

for believing that there is no classical (randomized) polynomial-time algorithm for Planted Clique. Indeed,
the difficulty of Planted Clique is becoming a standard average-case hardness assumption [AW17, BBB+13,
ABW10].

Our main result is a polynomial-time spectral algorithm in the vein of [AKS98] for Planted Clique. Under
an assumption, we show that this algorithm can be run on O(log n) qubits, an exponential improvement when
compared to the number of bits needed to directly run the classical spectral algorithm of [AKS98]. We also show
that a straightforward application of Grover’s algorithm combined with the correct encoding of the problem
gives a log2 n-qubit algorithm with a quadratic improvement in runtime over the best known algorithm classical
algorithm for k = nδ for δ < 1/2 (which we detail in Appendix A).

1.1 Prior work
Following this work, the authors became aware of work of Ta-Shma [TS13] which gives a quantum logspace
algorithm for finding any eigenvalue of a matrix, and thus for solving planted clique for the same range of
parameters as our work. In fact, at a high level this algorithm is nearly the same as ours; Section 5 outlines their
main algorithm, which is identical to Algorithm 2. The key departure is our use and analysis of [LMR14], which
necessitates Assumption 16 but leads to (in our estimation) a clean algorithm without too many technical details.
By contrast Section 4 of [TS13] circumvents the work of [LMR14] (which appeared the following year) by using
a non-trivial line of work on decomposing Hamiltonian operators.

Another consequence of [TS13] is a classical O(log2 n) space algorithm for finding eigenvalues, due to work
of van Melkebeek and Watson [MW12] which implies that BQL ⊆ SPACE(log2 n). Thus while our results
show an exponential speedup over the direct translation of [AKS98], they show at most a quadratic improvement
over the best classical algorithms. As of the time of this writing the authors are unaware of any o(log2 n)
space algorithm for finding the eigenvalues of a matrix, even a Hermitian norm 1 operator with eigenvalues
separated by n−Ω(1). Here we note that while follow-up works of [TS13] give classical logspace algorithms for
finding eigenvalues, they only apply to Hermitian norm 1 operators where there exist constant separations in the
eigenspectrum [Dor14, DSTS17].

2 Definitions and Preliminaries
We begin by formally defining the Planted Clique problem, which is defined using the following two distributions.

Definition 1 (Erdős-Rényi Random Graph). An Erdős-Rényi random graph G is sampled from the distribution
G(n, p) by including each of the

n
2

possible edges (vi, vj) with probability p.

Definition 2 (Planted Clique Distribution). A random graph is sampled from the distribution G(n, p, k) by first
sampling G ∼ G(n, p) and then choosing a random subset S of k vertices of G and planting a clique on them.
That is, for every vi ∕= vj ∈ S, the edge (vi, vj) is added to G.

With these distributions in hand, we are ready to define the Planted Clique problem; we will state it for the
standard parameter p = 1/2.

Definition 3 (Planted Clique). Given as input a graph G, determine (with high probability) whether G ∼ G(n, 1
2)

or G ∼ G(n, 1
2 , k), each of which occur with probability 1/2.

Because we will be interested in quantum algorithms for the Planted Clique problem, we quickly review
some useful properties of quantum states. Throughout this work, we will use lower-case greek letters, such as
ψ, ρ,σ, to represent quantum states. We will use upper-case greek letters, such as Σ, P to denote the registers
that these quantum states occupy. Throughout this work, it will be convenient to take advantage of the density
matrix representation of quantum states.

Definition 4 (Density Matrix). A Density Matrix is a matrix that describes the state of a system. It is defined as,

ρ =

i

pi|ψi〉〈ψi|,

2

where pi denotes the probability that the system is in the pure state |ψi〉.

Alternatively, density matrices are matrices which satisfy the following conditions:

1. They are Hermitian.

2. They are positive semi-definite.

3. Their trace is 1.

Recall that matrices σ are evolved by conjugation UσU†, where U is either a unitary matrix. Furthermore,
σ may be evolved by more general operations, known as admissible operations. An admissible operation (also
known as a completely positive trace preserving operation) is any operation D that can be written in the form

D(σ) =

ℓ

j=1

AjσA
†
j ,

for matrices Aj satisfying AjA
†
j = I, where I is the identity matrix.

3 Towards a Space-Efficient Quantum Algorithm for Planted Clique
Our space-efficient quantum algorithm for Planted Clique is inspired by the spectral algorithm of Alon, Krivele-
vich, and Sudakov [AKS98]. For intuition, we first present the classical polynomial-time spectral algorithm for
planted clique. We defer the analysis to the next section.

Theorem 5. Let G be a graph sampled either from G(n, 1/2) or G(n, 1/2, k) for k = Ω(
√
n). Then the

following algorithm distinguishes which distribution G was sampled from:

Algorithm 1 Planted-Clique-Detector
1: procedure PCLIQUE(G = (V,E))
2: Compute λ2, the second largest eigenvalue of the adjacency matrix of G.
3: If λ2 = (12 ± 1

4)k, return planted, otherwise return random
4: end procedure

The algorithm is quite simple, but the major factor contributing to the space usage is in computing the second
largest eigenvalue in step 1. Turning to quantum algorithms it is known that given a unitary matrix U one can
recover its eigenvalues (in superposition) via an algorithm called phase estimation [Kit95]. Given U and an
eigenvector |uj〉 with eigenvalue e−iλj , the phase estimation algorithm writes the t most significant bits of λj in
binary to an auxilliary t-qubit register. More generally, for a unitary U with eigenbasis {|uj〉}j and corresponding
eigenvalues e−iλj , and some error parameter δ,

PEU,t,δ

j

αj |uj〉, |0t〉

=

j

(αj ± δ)|uj〉|λj [1]λj [2] . . .λj [t]〉

where λj [i] is the ith most significant bit of λj .
There are two obstructions to using this algorithm directly on A. First, A is an adjacency matrix and thus far

from unitary. We solve this problem by defining U = e−iρ, where ρ = 1
n2 (A+ nI). U will be unitary as long as

ρ is Hermitian, which follows if ρ is a Hamiltonian and positive semidefinite matrix. Hamiltonian follows from
the fact that both A and I are Hamiltonian matrices, and PSDness is shown in section 4.3. Most importantly,
the eigenvalues of U still give us a way to distinguish G(n, 1/2) from G(n, 1/2, k) as in the original algorithm,
which we state formally in the following lemma (to be proven in section 4.3):

Lemma 6. Given an adjacency matrix A for a graph G that is either sampled from G(n, 1/2) or G(n, 1/2, 100
√
n),

let ρ := A+nI
n2 . Then with probability at least 0.99

3

• λ1(ρ) ≥ 5
4n

• |λ3(ρ)| . . . |λn(ρ)| ≤ 1
n + 1

n3/2

• if G ∼ G(n, 1/2), then |λ2(ρ)| ≤ 1
n + 1

n3/2 ; if G ∼ G(n, 1/2,
√
n), then |λ2(ρ)− (1n + 50

n3/2)| ≤ 25
n3/2

We make a note of classical approaches making use of Lemma 6. It was proved in [Dor14] that testing
whether or not there exists an eigenvalue within α = Ω(1) distance of a given ℓ can be done in L, but for
α = O(n−c) it is conjectured that this problem requires Ω(log2 n) space classically, although proving this would
imply L ∕= P. Since |λ2(ρ) − λ3(ρ)| ≤ 24

n3/2 regardless of the distribution G was sampled from, this falls into
the regime when α = O(n−c).

The second obstruction is that to recover the tth most significant bit of the eigenvalues of U we need to be
able to implement U2t . Removing this obstruction is much trickier, and so we take this as a black box assumption
for the time being and return to it in a later section.

Assumption 7. For every t and δ > 0 there exists a quantum circuit taking as input a vector |σ〉 and outputting
U2t |σ〉 with probability 1− δ in time O((2t)2/δ · poly(n)) and auxiliary space O(log n). Furthermore, this aux-
iliary space is unentangled from the qubits containing U2t |σ〉, and therefore can be reused after the computation.

Before presenting the algorithm we will sketch it at a high level. We will mimic the behavior of Algorithm 1
by using phase estimation. Since we cannot calculate an eigenvector of U in small space, we choose a random
state instead, as a random state will be a superposition over all n eigenvectors {|uj〉}j of U . Applying phase
estimation we get the same superposition {|uj〉}j over all eigenvectors of U , but now for each eigenvector
we have its corresponding eigenvalue λj stored in an auxiliary register to some high precision. Because the
eigenvalues are stored in superposition, all we can do to obtain any individual eigenvalue is to measure this
register, which returns each eigenvalue λj with some probability. By choosing a random vector we hope that
the probability of choosing each eigenvalue, and in particular the second eigenvalue λ2, is close to uniform.
Then, because our procedure is efficient we can simply iterate polynomially many times to ensure that with high
probability we measure λ2 at some point in the computation. At each stage we test to see if we’ve measured λ2

by simply interpreting the binary value as a number, using Lemma 6 to know what value of λ2 to look for, namely
appproximately 1/n+50/n3/2. Note that this value will only appear if the input graph contains a planted clique,
and otherwise all eigenvalues (including λ2) are far away from this target value. Our algorithm fails if a) we fail
to measure λ2 in the planted clique case, or b) the errors that come from phase estimation cause us to either see
a false positive or not recognize our target value and get a false negative. Both of these errors will be bounded
by o(1), and so our algorithm succeeds with probability much greater than 2/3. Finally note that we reset all of
our registers in between iterations (one iteration being initialize a random vector, perform phase estimation, and
measure the eigenvalue register), and so our space usage is only dependent on what we need to do these three
steps, the only nontrivial one being phase estimation which we can do efficiently by Assumption 7.

We now present our main algorithm in full:

Algorithm 2 Quantum-Planted-Clique-Detector
1: procedure DIST(G = (V,E))
2: define ρ := A+nI

n2 , define t := 3
2 log n, and define δ = 1/n3

3: for n2 iterations do
4: Let Σ and Λ be registers on log n and t qubits respectively, initially all zeroes
5: Apply H to each qubit in Σ and measure Σ
6: Use Assumption 7 to apply PEU :=e−iρ,t(Σ,Λ)
7: Measure Λ and check if the result is 1

n + 50
n3/2 ± 25

n3/2 ; if so then output planted
8: end for
9: output random

10: end procedure

Theorem 8 (Main Theorem). Under Assumption 7, with probability at least 0.98 Algorithm 2 distinguishes
between G ∼ G(n, 1/2) and G ∼ G(n, 1/2, 50

√
n) in time poly(n) and space O(log n).

4

Proof. Let |σ〉 =

j αj |uj〉 be the state in Σ before applying Phase Estimation, where {uj}j is the eigenbasis
of U . After applying Phase Estimation, with probability 1 − n−3 the joint state of the Σ and Λ registers is

j αj |uj〉|λj [1] . . .λj [t]〉, and after measuring Λ we get |λj [1] . . .λj [t]〉 for some j. Let λ be the interpretation
of the binary string measured in Λ as a binary decimal value. By our assumption with t = 3/2 log n,

|λ− λj | ≤
1

n3/2

Therefore by Lemma 6 with probability 0.99 the only way λ = 1
n+

50
n3/2 ± 25

n3/2 is if j = 2 and G ∼ G(n, 1/2, k).
Lastly we show that we will measure λ2 at some point in our algorithm. We write |u2〉 =

i∈{0,1}log n βi|i〉.

Recall that |σ〉 was initialized to |i〉 for a randomly chosen string i ∈ [log n], and so for each |i〉 the probability
that |σ〉 = |i〉 is exactly 1/n by construction. Therefore the probability of measuring |λ2〉 is

i∈{0,1}m

|βi|2〈i|σ〉 =
1

n

i∈{0,1}log n

|βi|2 =
1

n

and so after n2 rounds the probability of having not observed λ2 is e−Ω(n2) by Chernoff bounds. In each round
by Assumption 7 phase estimation fails with probability at most 1/n3. Thus our total probability of failure after
n2 rounds is at most 0.01 + n2/n3 + n2e−Ω(n2) ≪ 0.02.

We now analyze the time and space usage of our algorithm. We use Assumption 7 to apply Phase Estimation
with t = 3

2 log n and δ = 1/n3 in time O((2t)2/δ · poly(n)) = poly(n) and space O(log n). We have n2

rounds each running Phase Estimation. We require log n qubits to store σ, 3
2 log n qubits to store λ, as well as

the additional O(log n) qubits for Assumption 7. After each iteration of the for loop of this algorithm, we will
reuse each of these registers by simply observing them and then classically setting them back to the all-zeroes
state. Thus our space usage is O(log n) as claimed.

4 Analysis of Spectral Guarantees
In this section, we discuss the spectral distribution of the adjacency matrix of the graph in both, the planted and
non-planted case. This will in turn give us a simple classical algorithm (Algorithm 1) that distinguishes between
the two cases (it can also be extended to recovering the clique by just looking at the second eigenvector). The
distribution of the eigenvalues will further be used in the analysis of our quantum algorithm. We begin by
analysing the classical algorithm.

4.1 Spectral Algorithm for Recovering Planted Cliques
Algorithm 1 looks at the second eigenvalue and distinguishes between the graphs with and without a planted
clique with high probability. To recover the clique when there is one, we just need to look at the k largest entries
in the second eigenvector. In this section we will see why we care about the second eigenvector and eigenvalue.
We will also look at the spectral distribution when there is a planted clique.

In order to see why the second eigenvector distinguishes our clique let us first look at the expected adjacency
matrix of the graph. Let Â denote the expected adjacency matrix of G. The vertices are indexed so that the first
k vertices correspond to the ones belonging to the clique.

Â =

1 . . . 1 1/2 . . . 1/2
...

...
...

...
...

...
1 . . . 1 1/2 . . . 1/2
1/2 . . . 1/2 1/2 . . . 1/2

...
...

...
...

...
...

1/2 . . . 1/2 1/2 . . . 1/2

5

Note that the above matrix has only 2 different type of rows and thus has rank 2. In other words Â has only 2
non zero eigenvalues. It is shown in [Rou17] that these are roughly n/2 and k/2 (to be exact they are n/2+o(n)
and k/2 + o(1)). The corresponding eigenvectors are approximately

u1 = (1, 1, . . . , 1)

u2 = (n− k, . . . n− k,−k, . . .− k).

The eigenvector u2 above has n − k on the vertices corresponding to the clique and −k on the other vertices.
If our adjacency matrix was like this, we could exactly distinguish the clique vertices from the other vertices by
looking at the entries of the second eigenvector. Of course, the actual adjacency matrix differs from the expected
adjacency matrix, but it was shown in [Rou17] that it doesn’t differ by too much when k = Ω(

√
n). We now

show, using Chernoff bounds, that the largest and second largest eigenvalues of the actual adjacency matrix are
indeed close to n/2 and k/2 with high probability.

Lemma 9. The largest eigenvalue λ1 and the second largest eigenvalue of λ2 of A are such that

P

0.5

n

2
≥ λ1 ≤ 1.5

n

2

≥ 1− e−

n
16

P

0.5

k

2
≥ λ2 ≤ 1.5

k

2

≥ 1− e−

k
16

Proof. We treat λ2 as a random variable with expectation k/2 + o(1) ≈ k/2. Using Chernoff bounds we get

P

λ2 ≥ (1 + 0.5)

k

2

≤ e−

k
16

and

P

λ2 ≤ (1− 0.5)

k

2

≤ e−

k
16 .

The result now follows from a union bound. The same analysis follows for the largest eigenvalue as well.

Thus, when we have a planted clique in our random graph, we get eigenvalues close enough to n/2 and k/2
with high probability. All other eigenvalues are similar to the no clique case [Rou17].

4.2 Graphs with no Planted Clique
Suppose we just have a random graph with no planted clique, i.e., our graph G ∼ G(n, 1/2). In this section
we observe how the eigenvalues of the adjacency matrix of this graph are distributed. Let us first consider the
expected adjacency matrix. The expected adjacency matrix of such a graph has all entries 1/2 and has only
one non-zero eigenvalue λ1 = n/2. However, the actual adjacency matrix differs somewhat from the expected
matrix. The following two lemmas bound bound the true distribution of the eigenvalues of the adjacency matrix.
First, we have the following result from [CLV03].

Lemma 10. In an Erdos-Renyi random graph G(n, p), the highest eigenvalue of the adjacency matrix is almost
surely greater than max{np,

√
n}

The above lemma implies that the largest eigenvalue of our adjacency matrix is at least n/2 with high proba-
bility.

Our next result from [TVW10] is about the distribution of all other eigenvalues in an Erdos-Renyi graph.
Before we state the result, we define what we mean by an Empirical Spectral Distribution.

Definition 11 (Empirical Spectral Distribution). The empirical spectral distribution (ESD) of a matrix A is a
one-dimensional function

F (x) =
1

n
|{1 ≤ j ≤ n− 1 : λj(A) ≤ x}|.

6

This can be thought of like the cumulative distribution function. The next lemma is in terms of the density
function which when integrated over a range gives the ESD.

Lemma 12. For p = ω(1/n), the empirical spectral distribution (ESD) of the matrix 1√
np(1−p)

A converges in

distribution to the semicircle distribution which has a density

ρ(x) =
1

2π

4− x2. (1)

The above theorem implies that all but the largest eigenvalue of 2√
n
A lie between −2 and 2. We can thus

conclude that all but the largest eigenvalues of A lie between −
√
n and

√
n. The following corollary sums the

results on the distribution of eigenvalues.

Corollary 13. Let G = G(n, 1/2). If G does not have a planted clique, then the largest eigenvalue is at least
n/2 and all other eigenvalues are between −

√
n and

√
n with high probability.

4.3 Spectral Bounds for the Density Matrix
Theorems 5 and 8 follow directly from Lemma 6. We thus prove Lemma 6 in this section.

Proof. (of Lemma 6) Recall that we define

ρ :=
nI+A

n2

Note that ρ is a positive semi-definite matrix since for any real n × n matrix with entries 0, 1, the eigenvalues
can only lie between −n and n. Here A is a real matrix with entries 0 or 1 the minimum eigenvalue is −n. Now
nI + A have eigenvalues n + λi(A) and are thus non-negative implying ρ to be a positive semidefinite matrix.
Now if G has a planted clique of size k = 100

√
n, from Lemma 9 we have that with high probability the top two

eigenvalues from of ρ are:

5

4n
≤ λ1(ρ) ≤

7

4n
1

n
+

25

n3/2
≤ λ2(ρ) ≤

1

n
+

75

n3/2
.

When G does not have a planted clique, then by Corollary 13, with high probability the top two eigenvalues
satify,

λ1(ρ) ≥
3

2n

λ2(ρ) ≤
1

n
+

1

n3/2
.

As mentioned in the discussion in the previous sections (Lemma 13 for the no clique case and [Rou17] for the
case with the clique), all other eigenvalues in both cases are less than 1

n + 1
n3/2 in absolute value.

5 The LMR Algorithm
In this section we prove Assumption 7, under a weaker assumption that one can efficiently implement ρ := A+nI

n2 ,
the scaled adjacency matrix. For this, we will rely heavily on the algorithm of Loyd, Mohseni, and Rebentros
[LMR14]. Phase estimation allows one to recover the eigenvalues of a unitary matrix U assuming that you are
given the ability to apply controlled U t for some t ∈ N. Loyd, Mohseni, and Rebentros showed that if the unitary
U is of the form e−iρt for some density matrix ρ, then it is possible to efficiently approximate U tσ(U t)†, given
many copies of ρ. Here, approximate is in terms of the trace distance between matrices A and B,

1

2
A−Btr

where Atr =
√
AA†.

7

Theorem 14. ([LMR14]) Let σ, ρ be two unknown states. There is a quantum algorithm that takes σ⊗ ρ⊗ℓ and
outputs σ̃ such that

1

2
e−iρtσeiρt − σ̃tr ≤ δ,

where ℓ = O(t2/δ) in running time O(t2/δ).

For clarity in describing the algorithm, we will denote by Σ the registers that hold the state σ and by Pi the
registers that hold the ith copy of ρ. Furthermore, we will denote the contents of register Pi by ρPi

The algorithm
will use two operators. The first is the partial trace operator, which is analogous to marginalizing in probability
theory. For a composite Hilbert space HΣ ⊗HPi the partial trace of Pi is the linear extension of the map

TrPi [αΣ ⊗ βPi] = Tr[β]αΣ, (2)

where Tr[] is the standard matrix trace. Formally, for a basis {|ui〉} of Σ and a basis {|vi〉} of Pi, and a state
γΣ,Pi =

i,j,k,l pi,j,k,l|ui〉〈uj |⊗ |vk〉〈vl| over HΣ ⊗HPi

TrPi [γΣ,Pi] = ci,j,k,l|ui〉〈uj |〈vk|vl〉.

The partial trace is known to be an admissible operator. That is, we marginalize to only look at the Σ qubits,
ignoring Pi. The second operator is the swap operator which swaps the values of two registers (or sets of
registers). Define Sj to be the gate which swaps the contents of register A with register Bi;

Sj(αΣ ⊗ βPj
) = βΣ ⊗ αPj

.

Note that Sj is a unitary because S2
j = I . The LMR algorithm proceeds by repeatedly applying a partial swap

between the register Σ originally holding σ and the registers Pj holding ρ. This partial swap is computed by the
operator

e−iSjε = (cos ε)I − i(sin ε)Sj

The LMR algorithm proceeds as follows:

Algorithm 3 LMR
1: procedure LMR(σ ⊗ ρ⊗ℓ)
2: Let ℓ = O(t2/δ) and let ε = δ/t
3: for j ∈ [ℓ] do
4: Let σ′

Σ be the state in register Σ.
5: TrBj

[e−iεSj (σ′
Σ ⊗ ρPj

)eiεSj].
6: end for
7: end procedure

We defer the reader to Appendix B of the paper of Kimmel et al. [KLL+17] for the analysis of this algorithm,
and that it does indeed produce a density matrix which is at most δ away e−iρtσeiρt in trace distance.

Approximating Controlled Powers of U The LMR algorithm alone is not enough for phase estimation. In-
deed, phase estimation required the ability to apply controlled powers of U . Kimmel et al. [KLL+17] show that
this can be achieved without altering the LMR algorithm, by instead by replacing ρ with ρ̃ := |1〉〈1|⊗ ρ, noting
that

e−iρ̃t = e−i(|1〉〈1|⊗ρ)t = |0〉〈0|⊗ IΣ + |1〉〈1|⊗ e−iρt,

where IΣ is the identity matrix acting on the registers holding ρ. Therefore, this leaves the LMR algorithm
unchanged.

Efficient Implementation A second useful observation of Kimmel et al. [KLL+17] is that the (potentially
expensive) partial swap operation e−iSjε can actually be implemented efficiently, in particular, using O(t2/δ ·
log dim(HΣ)) single-qubit controlled swap gates.

8

5.1 LMR with Space Conservation
The LMR algorithm is designed for the case when both σ and ρ are unknown. We show that if ρ is known ahead
of time, and furthermore that copies of ρ can be implemented efficiently, then the LMR algorithm can be run
using only a single ρ-register P .

Lemma 15. Assume there exists a quantum algorithm A that takes in the state |02 logn〉 and outputs the density
matrix ρ in polynomial time and logarithmic space. Then there is a quantum algorithm that takes as input σ ⊗ ρ
and outputs σ̃ ⊗ ρ′ such that

1

2
e−iρtσeiρt − σ̃tr ≤ δ,

running in time O(t2/δ) and logarithmic space.

The algorithm is simple: we reuse the same ρ-register P for each iteration of the LMR subprocedure, and
after the iteration is over we “reset” P to the all-zeroes state by measuring it and then making the necessary
transformation. Because we don’t use the result of measuring P for any other calculations, the density matrix
σ will actually be treated as if P was left untouched and a new register containing ρ was introduced into the
system. With this analysis in hand we perform LMR as usual, and for completeness we state the algorithm now:

Algorithm 4 Space-Conscious LMR
1: procedure LMR(σ ⊗ ρ)
2: Let ℓ = O(t2/δ) and let ε = δ/t.
3: for j ∈ [ℓ] do
4: Let σ′

Σ be the state in register Σ.
5: TrPj

[e−iεSj (σ′
Σ ⊗ ρP)e

iεSj].
6: Reset registers P to |0〉 with algorithm A.
7: Load P ← ρ
8: end for
9: end procedure

Proof. (of Lemma 15) First, note that the time of our algorithm is O(ℓ) ·TIME(A) and the space is 2 ·2 log n+
SPACE(A), which are polynomial and logarithmic in n respectively. Thus we prove that 1

2e
−iρtσeiρt−σ̃tr ≤

δ. Consider the jth execution of the inner subroutine, where σj and ρj are the states of Σ and P (respectively)
after applying the partial trace operation. Note that by definition the matrix σj after marginalizing away ρj is
the expectation over all measurement outcomes of P of the posterior matrix σj . Thus, measuring P still leaves
the Σ register with the expected density matrix σj , and so when we reset P the joint state of the system is
indistinguishable from any other measurement outcome on P , and so Σ holds the actual marginal density matrix
from the jth execution of the inner subroutine of Algorithm 3. The lemma then holds by the same analysis as
before (see appendix B of [KLL+17]).

5.2 Phase Estimation using LMR
Finally, we prove Assumption 7, using the space-conscious LMR algorithm from Lemma 15. We rely on the
following weaker assumption:

Assumption 16. Let ρ := A+cI
Tr(A+cI) be the state in Algorithm 2, where A is the adjacency matrix of the input

graph. We assume that there is a procedure that begins with |0〉 and produces ρ̃ := |1〉〈1|⊗ ρ is in time poly(n)
and uses an additional O(log n) qubits, starting in the state |0〉, and which are not entangled with ρ̃ at the end of
the algorithm (and so can be replaced with |0〉 for the next iteration).

We note that setting a register to |0〉 is one of DiVincenzo’s necessary criteria for a quantum computer
[DiV00], and so this is not necessary to assume as part of Assumption 16.

9

Lemma 17. Phase estimation on unitary U = e−iρ can be performed to precision κ and failure probability
O(δ/κ) in time O(tρ̃/κδ) using O(dim(U) + sρ̃) auxiliary qubits, provided that Assumption 16 holds. Here tρ̃
and sρ̃ = O(log n) are the time and additional qubits needed by the algorithm for Assumption 16.

This was first proven in Kimmel et al. [KLL+17] when the standard LMR algorithm is used, we restate it
here for completeness.

Proof. Estimating an eigenvalue of U up to precision κ requires obtaining the log(1/κ) bits of that eigenvalue. To
apply Kitaev’s phase estimation [Kit95] one needs to apply controlled-U t for t = 2i and i ∈ [0, 1/κ]. Because
this is geometric, we need to apply controlled-U O(1/κ) times. This can be done by repeated application of
Lemma 15 (for t = 1), using the same space. Let δ be the bound in the trace distance for Lemma 15 (which can
be chosen), then the total error in trace distance of the final state is O(δ/κ).

Because every application of Lemma 15 (for t = 1) requires time O(tρ̃/δ), the runtime of the algorithm is
O(1/κδ). Finally, by Lemma 15, each application of U can be done in place, and therefore, the space required to
hold σ and ρ is O(log dim(U)), with the additional space sρ̃ that we are allowing for the construction of ρ̃.

6 Conclusions and Open Problems
This paper initiates the study of the Planted Clique problem in the setting of quantum computation. The main
contribution is an algorithm which, under a mild assumption, requires only a logarithmic number of qubits, a
quadratic improvement over the classical spectral algorithm. As well, we show that for k = nδ <

√
n, a simple

application of Grover’s Algorithm gives a slight improvement in the running time over the most efficient classical
algorithm for this range of k. We conclude by mentioning several open problems:

1. The first immediate problem left over by this work is to remove Assumption 16. That is, to show that there
is an algorithm that efficiently implements ρ̃, the controlled scaled adjacency matrix.

2. Not only is the classical spectral algorithm able to distinguish the random graphs from random graphs with
a planted clique (for k ≥ O(

√
n)), but it is able extract the planted clique by using the largest entries of

the eigenvector corresponding to the second largest eigenvalue. For this range of parameters, extracting a
planted clique using only O(log n) qubits remains an interesting open problem. While the posterior state
of our algorithm actually holds an implicitly encoded copy of the eigenvector we want, it is unclear if
we can recover the largest values even with multiple copies of the eigenvector. These values would have
to be significantly bigger than the ones corresponding to non-clique vertices in order to recover even one
vertex of the clique with high probability, which is true in the corresponding eigenvector of the expected
adjacency matrix but seems unlikely to be true for the true adjacency matrix. Still, there may be a way to
rotate the eigenvector towards the eigenvector of the expected adjacency matrix, or otherwise amplify the
larger coefficients such that we could recover clique vertices with high probability.

3. Our improvement for k = o(
√
n) (see Appendix A) is a blind application of Grover’s Algorithm. This

ignores the significant amount of structure in the planted clique and the sub-cliques formed by them.
Whether quantum algorithms are able exploit this structure is still unclear and an interesting avenue to
explore. On one hand, a quantum algorithm for k = o(

√
n) would be a significant breakthrough, especially

since planted clique is being used as a hardness result in cryptography [AW17,ABW10]. On the other hand,
negative results (even for natural families of quantum algorithms) would give evidence that the hardness of
planted clique is a reasonable assumption even for quantum computation, supporting its use as a hardness
assumption.

References
[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from different as-

sumptions. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 171–180, 2010.

10

[AKS98] Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a random
graph. Random Struct. Algorithms, 13(3-4):457–466, 1998.

[AW17] Aubrey Alston and Yanrong Wo. On the cryptanalysis via approximation of cryptographic primitives
relying on the planted clique conjecture. CoRR, abs/1707.00078, 2017.

[BBB+13] Maria-Florina Balcan, Christian Borgs, Mark Braverman, Jennifer T. Chayes, and Shang-Hua Teng.
Finding endogenously formed communities. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013, pages 767–783, 2013.

[BBHT] Michel Boyer, Gilles Brassard, Peter Hyer, and Alain Tapp. Tight bounds on quantum searching.
Fortschritte der Physik, 46(45):493–505.

[BE76] Béla Bollobás and Paul Erdös. Cliques in random graphs. Mathematical Proceedings of the Cam-
bridge Philosophical Society, 1976.

[BHK+16] Boaz Barak, Samuel B. Hopkins, Jonathan A. Kelner, Pravesh Kothari, Ankur Moitra, and Aaron
Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 428–437, 2016.

[CLV03] Fan Chung, Linyuan Lu, and Van Vu. Spectra of random graphs with given expected degrees.
Proceedings of the National Academy of Sciences, 100(11):6313–6318, 2003.

[DiV00] David P DiVincenzo. The physical implementation of quantum computation. Fortschritte der
Physik: Progress of Physics, 48(9-11):771–783, 2000.

[DM15] Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden clique
and hidden submatrix problems. CoRR, abs/1502.06590, 2015.

[Dor14] Dean Doron. On the problem of approximating eigenvalues of undirected graphs in probabilistic
logspace. 2014.

[DSTS17] Dean Doron, Amir Sarid, and Amnon Ta-Shma. On approximating the eigenvalues of stochastic
matrices in probabilistic logspace. computational complexity, 26(2):393–420, Jun 2017.

[FGR+17] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Srinivas Vempala, and Ying Xiao. Statistical
algorithms and a lower bound for detecting planted cliques. J. ACM, 64(2):8:1–8:37, 2017.

[FK03] Uriel Feige and Robert Krauthgamer. The probable value of the lovász–schrijver relaxations for
maximum independent set. SIAM J. Comput., 32(2):345–370, 2003.

[GM75] G. R. Grimmett and C. J. H. McDiarmid. On colouring random graphs. Mathematical Proceedings
of the Cambridge Philosophical Society, 77(2):313324, 1975.

[HKP+18] Samuel B. Hopkins, Pravesh Kothari, Aaron Henry Potechin, Prasad Raghavendra, and Tselil
Schramm. On the integrality gap of degree-4 sum of squares for planted clique. ACM Trans. Algo-
rithms, 14(3):28:1–28:31, 2018.

[Jer92] Mark Jerrum. Large cliques elude the metropolis process. Random Struct. Algorithms, 3(4):347–360,
1992.

[Kar76] R. M. Karp. The Probabilistic Analysis of some Combinatorial Search Algorithms. In J. F. Traub,
editor, Algorithms and Complexity: New Directions and Recent Results, pages 1–20. Academic
Press, New York, 1976.

[Kit95] A Yu Kitaev. Quantum measurements and the abelian stabilizer problem. 1995.

11

[KLL+17] Shelby Kimmel, Cedric Yen-Yu Lin, Guang Hao Low, Maris Ozols, and Theodore J Yoder. Hamil-
tonian simulation with optimal sample complexity. npj Quantum Information, 3(1):13, 2017.

[Kuc95] Ludek Kucera. Expected complexity of graph partitioning problems. Discrete Applied Mathematics,
57(2-3):193–212, 1995.

[LMR14] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum principal component analysis.
Nature Physics, 10(9):631–633, July 2014.

[MPW15] Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for planted clique.
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 87–96, 2015.

[MW12] Dieter van Melkebeek and Thomas Watson. Time-space efficient simulations of quantum computa-
tions. Theory of Computing, 8(1):1–51, 2012.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In Pro-
ceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 245–254, 2008.

[Rou17] Tim Roughgarden. Cs 264 : Beyond worst-case analysis lectures 9 and 10 : Spectral algorithms for
planted bisection and planted clique. 2017.

[RS15] Prasad Raghavendra and Tselil Schramm. Tight lower bounds for planted clique in the degree-4
SOS program. CoRR, abs/1507.05136, 2015.

[TS13] Amnon Ta-Shma. Inverting well conditioned matrices in quantum logspace. In Proceedings of the
Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages 881–890, 2013.

[TVW10] L. Tran, V. Vu, and K. Wang. Sparse random graphs: Eigenvalues and Eigenvectors. ArXiv e-prints,
November 2010.

Appendix A: Grover’s Algorithm for Planted Clique
We sketch how to use Grover’s Algorithm to obtain a quantum algorithm for planted clique which slightly
improves upon the running time of the best known classical algorithm for k in the range 2 log n ≪ k ≪

√
n using

only O(log2 n) qubits. It is well known that with extremely high probability, the largest clique in G ∼ G(n, 1/2)
will be of size at most (2 + o(1)) log n [GM75, BE76]. Therefore, in order to determine whether there exists a
clique of size k > 2 log n in G, it is sufficient to decide whether there exists a clique of size larger than 2 log n,
say t = (2 + ε) log n for some constant ε ≤ 1. If such a t-clique exists then it is with extremely high probability
part of a planted k-clique. On the other hand, because every size-t subset of a k-clique is a t-clique, if no t-clique
exists in G, then G cannot contain a planted clique.

Claim 18. Let t = (2 + ε) log n. For any k ≥ t, there exists a quantum algorithm that runs in time O(en/k)t/2

that solves Planted k-Clique with high probability.

Our algorithm will use ℓ = log2

n
(2+ε) logn

-qubits. Fix some canonical ordering to the possible cliques in a

graph on n vertices. For each i ∈

n
t

, we interpret the state |i〉 as being associated with the ith possible t-clique,

we call it the ith- clique indicator. Let O be the phase oracle where

O|i〉 = (−1)cliqueG(i)|i〉,

where cliqueG(i) is the function that outputs 1 if i is a clique in the input graph G. The quantum circuit is as
follows:

|0〉⊗ℓ H Grover′s(O,M,N) ✌✌✌

12

Here, Grover′s(O) is Grover’s Algorithm for multiple solutions with oracle O and parameters number of so-
lutions M =

k
t

solutions and N = log2

n
t

number of qubits. Our choice of M follows from the fact that a

k-clique contains exactly

k
t

t-cliques, and G ∼ G(n, 1/2) contains no other t-cliques with high probability.

The algorithm behaves as follows: Applying H to |0〉⊗ℓ gives us a uniform super-position over clique indica-
tors. Grover’s Algorithm for multiple solutions applies the appropriate Grover iterate O(

M/N), which using

the oracle O will separate the non-cliques from the cliques. Then, we measure and obtain some clique indicator
|i〉. Finally, we check if the clique corresponding to |i〉 is in the graph or not; This can be done by looking at t
bits of the input classically. If it is a clique, we return planted, otherwise we return random.

Proof. (Of Claim 18) The runtime of this algorithm is dominated by the runtime of Grover’s Algorithm for
multiple solutions, which is O(

N/M). By our setting of N and M this is

O

n
t

k
t

≤ O

nt/(t)!

kt/(t)t

= O

(n/k)t

1 +

1

t

t

 ≤ O

(n/k)tet

(3)

where we have used that x!/xx = (1 + 1/x)x.
Two factors can cause the algorithm to fail: First is if the graph contains a t-clique, which happens with

extremely small probability. The second is if Grover’s Algorithm fails. Boyer et al. [BBHT] show that the failure
probability of Grover’s Algorithm is at most M/N ≤ (ek/n)t which is super-polynomially small for k = o(n).
Taking a union bound over both of these events concludes that this algorithm succeeds with high probability.

Finally, we show that this improves quadratically upon the best-known classical algorithm for certain ranges
of k = nδ . Plugging in t = (2 + ε) log n and k = nε to Equation 3, the runtime of the quantum algorithm is
bounded by

O

n(2+ε) log(e)/2n(1−δ)(2+ε) logn/2

= O

n(2+ε)(1+(1−δ) logn)/2

. (4)

In contrast, the classical algorithm runs in time

O

n

(2 + ε) log n

≥ O

n

(2 + ε) log n

(2+ε) logn

= O

n(2+ε)(logn−log((2+ε) logn))

.

13

