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Communication complexity is an extensively studied concrete measure of complexity for boolean func-

tions, with rich connections to many areas of Mathematics and Computer science including Game theory,

Data structures, Proof complexity, Differential Privacy, and Circuit Lower Bounds.

Let Alice and Bob be two players who have access to sets X,Y respectively (typically X = Y = {0, 1}n)

and a boolean function f : X × Y −→ {0, 1}. They would like to evaluate the expression f(x, y) where x ∈ X
and y ∈ Y . Bob may simply call up Alice and tell her y and Alice then proceeds to compute f(x, y). Let us

consider though a situation where Alice and Bob have access to supercomputers but they live very far away

from each other (separate galaxies?) and would like to minimize the messages they send between them. The

trivial method requires Bob to communicate all n bits of his input(maximum communication). Could we do

better? Luckily for many functions, we can!

A communication protocol π is an algorithm previously agreed upon by the two players, instructing them

to send information based on previous messages. After some number of bits have been communicated using

the protocol we would like the function to have been evaluated by one of the players.

In the randomized setting, we allow Alice and Bob to have access to public(shared between players) or

private(individual access) coin flips. Therefore a randomized protocol π depends both on previous messages

and coin flips and must evaluate f(x, y) with probability ≥ 2/3.

C(f, π) = maxx∈X,y∈Y ( bits communicated to evaluate f(x, y) using π) is the maximum communication

cost over all possible inputs evaluated on f : X × Y −→ {0, 1} using the protocol π. Then the determin-

istic communication complexity of the boolean function f is denoted D(f) = minπC(f, π) the minimum

communication over all deterministic protocols. And the Public and Private Randomized Communication

complexity are denoted Rpub(f) = minπpub
C(f, πpub) , R(f) = minπC(f, π) the minimum communication

over all randomized public and private protocols respectively.

Newman’s Theorem : R(f) ≤ Rpub(f) +O(log(n)).

1



Equality

The equality problem, EQ(x, y) = 1 if and only if x = y, is a classic example of the power of randomness

in communication complexity. It can be shown that the deterministic communication complexity for equality

is maximal, D(EQ) = Ω(n). But we can do much better with randomness.

Public randomness protocol:

1. Alice and Bob generate a uniform random string z ∈ {0, 1}n

2. Alice sends the bit (
∑
i xizi) mod 2

3. Bob compares the bit with (
∑
i yizi) mod 2, and decides if x = y

If x = y then with probability 1 they decide correctly.

if x 6= y with probability 1/2 they decide correctly.

We can decide the equality problem with probability ≥ 2/3 by running the above protocol twice. There-

fore Rpub(EQ) = O(1), and by applying Newman’s Theorem we get R(EQ) = O(log(n)). Therefore we have

an exponential separation between randomized and deterministic communication complexity!

Quantum Communication Models

Alice|x〉
V

|0〉
U X

Bob|y〉

Equality is one of many functions that induce separations between randomized and deterministic com-

munication complexity, one can ask the same question of quantum information. Can Alice and Bob use less

communication to evaluate their function if the had access to a quantum communication channel and/or

entanglement?

The model introduced by Yao[4] allows Alice and Bob to have access to the quantum states |x〉 and

|y〉 respectively. They will also share access to an intermediary quantum state (communication channel)

initialized to |0〉. A protocol is a quantum circuit, where Alice and Bob apply unitary transformations

to their state and the channel, computing f(x, y) w.h.p (we may also restrict it to be deterministic) by

measuring the result of the circuit. The communication cost of the protocol π for f , C(f, π) = ’number of

channel qubits affected by each of the gates in the circuit’. The Quantum communication complexity of the

boolean function f is calculated as Q(f) = minπC(f, π).

Combining Yao’s model and the model introduced by Cleve and Buhrman[5] we get the more powerful set-

ting where Alice and Bob also have access to an unlimited supply of entanglement(shared EPR pairs). In the

next two sections we will showcase some separations between the quantum and randomized communication

complexities.

Disjointness

The Disjointness function DISJ : {0, 1}2n −→ {0, 1} is defined as DISJ(x, y) = 1 if and only if ∃i ∈ [n] :

xi = yi = 1. It was shown that R(DISJ) ∈ Θ(n) by Razbarov[6], and Q(DISJ) ∈ Θ(
√
n) by Aaronson and
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Ambainis[7], Razbarov[8]. Therefore, DISJ gives us a quadratic separation between quantum and randomized

communication complexity!

We will present the quantum protocol by Buhrman, Cleve and Widgerson[9]. If Alice had access to y she

could solve DISJ(x, y) by running Grover’s algorithm on Z = x∧y (bit-wise). We will take this observation

and have Alice independently run Grover’s algorithm, calling upon Bobs assistance only when we query Z

during a Grover Iterate.

Protocol (k = log(n), R Phase Shift, U XOR Oracle, CCNOT Toffoli Gate):

1. Alice would like to apply the oracle on Z to her state |ψ〉 = 1√
n

∑
i∈{0,1}k |i〉

2. Alice sends |ψ2〉 = Ux(1,2)
|ψ〉1|0〉2|0〉3|0〉4 = 1√

n

∑
i∈{0,1}k |i〉1|xi〉2|0〉3|0〉4

3. Bob constructs |ψ3〉 = Uy(1,3) |ψ2〉 = 1√
n

∑
i∈{0,1}k |i〉1|xi〉2|yi〉3|0〉4

4. Bob constructs |ψ4〉 = CCNOT(2,3,4)|ψ3〉 = 1√
n

∑
i∈{0,1}k |i〉1CCNOT |xi〉2|yi〉3|0〉4

= 1√
n

∑
i∈{0,1}k |i〉1|xi〉2|yi〉3|xiyi〉4

5. Bob constructs |ψ5〉 = Rπ(4)
|ψ4〉 = 1√

n

∑
i∈{0,1}k |i〉1|xi〉2|yi〉3Rπ|xiyi〉4 = 1√

n

∑
i∈{0,1}k(−1)xiyi |i〉1|xi〉2|yi〉3|xiyi〉4

6. Bob sends back |ψ6〉 = Uy(1,3) ·CCNOT(2,3,4)|ψ5〉 = 1√
n

∑
i∈{0,1}k(−1)xiyi |i〉1|xi〉2|yi ⊕ yi〉3|xiyi ⊕ xiyi〉4

= 1√
n

∑
i∈{0,1}k(−1)xiyi |i〉1|xi〉2|0〉3|0〉4

7. Alice constructs |ψ7〉 = Ux(1,2)
|ψ6〉 = 1√

n

∑
i∈{0,1}k(−1)Zi |i〉1|xi ⊕ xi〉2|0〉3|0〉4 = 1√

n

∑
i∈{0,1}k(−1)Zi |i〉1|0〉2|0〉3|0〉4

8. Alice has therefore applied the oracle to her state!

Since Grover’s algorithm has O(
√
n) Grover iterates and each time we do Grover iterate we communicate

O(log(n)) qubits =⇒ Q(DISJ) ∈ O(log(n)
√
n). While this is not the optimal protocol it still separates

the quantum complexity from the randomized complexity.

Vector in Subspace

Now, we describe a problem for which the gap between quantum and classical communication complexity

is exponential.

The problem is described as follows:

• Alice is given an m-dimensional vector v ∈ Rm

• Bob is given two projection operators P0, P1 from Rm → Rm such that P0 + P1 = I

• It is given that either P0v = v or P1v = v

• The task is to find out whether P0v = v or P1v = v

The problem involves continuous inputs as any entry can be any real number but it can be discretized by

approximating each entry using O(logm) bits. Thus, the total input size to the problem is n = O(m2 logm)

bits. A simple quantum protocol that solves the problem is such that Alice views her input v as a logm-

qubits quantum state and sends it to Bob; Bob then measures with operators P0 and P1, and outputs the

result. Therefore we have Q(V SP ) ∈ O(log(m)) = O(log(n)).

A similar technique is not possible in the classical case. In fact it has been shown that R(V SP ) ∈
Ω(n1/3) [14]. Thus, there is an exponential separation between the quantum and randomized communication

complexity for this problem.
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Quantum Communication and Classical Information

Information Theory Preliminaries

Definition 1. The Shannon Entropy H(X) of a random variable X is defined as H(X) = Ex[log( 1
Pr(x) )] =∑

x[Pr(x)log( 1
Pr(x) )]

Definition 2. the Conditional Entropy of X given Y (X, Y random variables) is defined as H(X|Y ) =

Ey[H(X|Y = y)]

Chain rule : H(X,Y ) = H(X) +H(Y |X)

Definition 3. The mutual information of random variables X, Y is defined as I(X;Y ) = H(X)−H(X|Y ) =

H(Y )−H(Y |X) with conditional mutual information I(X;Y |Z) = H(X|Z)−H(X|Z, Y )

Information Complexity

Now we may define the notion of Information Complexity of a boolean function with domain X ×Y and

bounded-error ε, due to Braverman[12].

Definition 4. Information Complexity ICε(F ) = MinπMaxµICµ(π), where π is a protocol with error ≤ ε,
and µ is a distribution on the domain X × Y .

Definition 5. The information cost of a protocol π, ICµ(π) = I(π;X|Y ) + I(π;Y |X)

Information cost allows us to measure the information Alice and Bob learn about each other’s input

during the protocol π.

Information Complexity IC is one of the most important tools for proving lower bounds for classical and

randomized communication complexity. A natural question is how this complexity measure compares to

quantum communication? Kerenidis, Laplante, Lerays, Roland and Xiao[10] showed that the Information

complexity for the Vector in subspace problem IC(V SP ) ∈ Ω(n1/3). Therefore the Information Complexity

of the Vector in subspace problem is exponentially larger than its Quantum communication complexity.

Also, Anshu, Touchette, Yao and Yu[13] showed that the Symmetric k-ary Pointer Jumping function

by Rao and Sinha[11] has Quantum communication complexity exponentially larger than its Information

complexity.

Theorem 1. ([13]) There exists a (family of) Boolean function f and a distribution µ on the domain X×Y
such that Q(f, µ, 1/3) ≥ 2Ω(IC(f,µ,1/3)) ≥ 2Ω(QIC(f,µ,1/3))

Here QIC is the quantum analogue of information complexity, presented in the next section. Therefore we

have that the two complexity measures of Information Complexity and Quantum Communication Complexity

are incomparable!

In the same paper they showed that there exists a (tight) communication trade off for any quantum

protocol computing the Greater-Then function, as a consequence of their proofs.

Theorem 2. ([13]) Any quantum protocol computing Greater-Than with error ≤ 1/3, requires Alice to

communicate n
2O(b) bits to Bob, where b is number of bits sent by Bob.

Here Greater − Than(x, y) = 1 if and only if x ≥ y.

Quantum Information and Amortized Communication

We consider the model for quantum communication in which we are given quantum registers A and B

having associated set of mixed states as D(A) and D(B) respectively, and a channel from A to B is denoted

by NA→B which takes a mixed state in A to a mixed state in B. C(A,B) is the set of all channels from A

to B and U(A,B) is the set of all unitary channels. Tr¬A(.) = TrB(.) ∈ C(A ⊗ B,B) is an operator from
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A⊗B to A that tells mixed state in A⊗B seen as mixed state in A. For a state ρA ∈ D(A), the purification

is a pure state ρAR for some reference system R satisfying TrR(ρAR) = ρA. The distance between two states

ρ1 and ρ2 in D(A) is defined to be ||ρ1 − ρ2||A = Tr(|ρ1 − ρ2|).
Uncertainty or information in state ρ ∈ D(A) is defined as H(A)ρ = Tr(ρ log2 ρ). If ρ = Σjηj |j〉〈j|, then

H(A)ρ = Σjηj log2 ηj . We define 0 log2 0 as 0.

For pure bipartite state ρAB we have that H(A) = H(B) as it should be since the amount of information

is same as seen in A or B. For isomorphic A and B, and ρAB maximally entangled; H(A) = log2 dim(A).

Now, the problem that we are trying to solve is that we are given a communication channel N ∈
C(Ain ⊗ Bin, Aout ⊗ Bout), an input state ρ ∈ D(Ain ⊗ Bin), Alice has registers Ain, Aout and Bob has

registers Bin, Bout and they have to compute state N (ρ).

A protocol π for implementing N is given by a set of unitaries Ui
M+1
i=1 Alice and Bob compute by

themselves along with a pure state they share, ψ ∈ D(TA ⊗ TB) where TA and TB are of arbitrary size

belonging to Alice and Bob respectively. For appropriate finite dimensional registers A1, A3, . . . , AM−1, A
′

belonging to Alice and B2, B4, . . . , BM−2, B
′ belonging to Bob and communication registers Ci

M
i=1; we have

U1 ∈ U(Ain ⊗ TA, A1 ⊗ C1), U2 ∈ U(Bin ⊗ TB ⊗ C1, B2 ⊗ C2), U3 ∈ U(A1 ⊗ C2, A3 ⊗ C3), U4 ∈ U(B2 ⊗
C3, B4 ⊗ C4),. . . , UM ∈ U(BM−2 ⊗ CM−1, Bout ⊗ B′ ⊗ CM ), UM+1 ∈ U(AM−1 ⊗ CM , Aout ⊗ A′). We also

denote the channel implemented by the protocol as π.

π(ρ) = TrA′B′(UM+1UM · · ·U2U1(ρ⊗ ψ))

If ρAinBin has purification ρAinBinR, we say that protocol π has error ε ∈ [0, 2] if

||π(ρ)−N (ρ)||AoutBoutR ≤ ε

The set of all protocols implementing N , ρ having error at most ε is denoted by T (N , ρ, ε). If such

protocols are restricted in number of communication registers to M , the set is denoted by T M (N , ρ, ε).
Quantum Communication Cost of protocol π is calculated as Q(π) = Σi log2 dim(Ci) since log2 dim(Ci)

is the cost of communicating Ci. ε-error quantum communication complexity of N on input ρ is defined as

Q(N , ρ, ε) = minπ∈T (N ,ρ,ε)Q(π).

Quantum Information Cost for protocol π, input state ρ is calculated asQIC(π, ρ) = Σi>0,odd
1
2I(Ci;R|Bi−1)+

Σi>0,even
1
2I(Ci;R|Ai−1) where B0 = Bin ⊗ TB . The quantum information cost roughly denotes the amount

of information Alice and Bob gain about each other’s input using the qubits transferred between them while

the communication cost is the amount of qubits transferred. We take the information cost as this since it

was proved in [1, 2] that the amortized cost of communicating C when qubits C are transferred from Alice

to Bob where A is the feedback to Alice, B is the side information held by Bob and R is the reference system

is 1
2I(C;R|B). Quantum Information Complexity is calculated as QIC(N , ρ, ε) = infπ∈T (N ,ρ,ε)QIC(π, ρ).

Protocol πn computes n-fold product channel N⊗n on ρ⊗n with error ε if ∀i ∈ [n], ||Tr¬(Ai
in,B

i
in,R

i) ◦
πn(ρ⊗n)−N (ρ)||Ai

outB
i
outR

i ≤ ε. n-fold quantum communication complexity is denoted as Qn(N⊗n, ρ⊗n, ε).
Amortized quantum communication complexity is calculated as

AQCC(N , ρ, ε) = lim sup
n→∞

1

n
Qn(N⊗n, ρ⊗n, ε)

The following two inequalities follows from the fact that 1
2I(C;R|B) ≤ log2 dim(C).

0 ≤ QIC(π, ρ) ≤ Q(π)

QIC(N , ρ, ε) ≤ Q(N , ρ, ε)

Our goal here is to establish the fact that QIC(N , ρ, ε) = AQCC(N , ρ, ε). This is intutively true since

the information transferred is same as data transferred in amortized sense. Intutively, if we have 0.1 bits of

information to be sent, we have to send 1 bit but if we send 0.1 bits of information ten times, we can send
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it in nearly one bit by compression. This is only an intuition behind why the above equation is true but it

needs a formal proof. Due to lack of space, we won’t give a formal proof but would refer to [3]. However,

the proof follows from the following main lemmas.

Lemma 1 ([3]). For any M-message protocol π, any input state ρ and any ε ∈ (0, 2], δ > 0, there exists a

large enough n0 such that for any n ≥ n0, there exists a protocol πn ∈ T (π⊗n, ρ⊗n, ε) satisfying

1

n
Q(πn) ≤ QIC(π, ρ) + δ

Taking limit of n to infinity, δ to 0 and infimum over both sides gives us intutively that AQCC(N , ρ, ε) ≤
QIC(N , ρ, ε).

The following two lemmas are useful in proving the opposite direction.

Lemma 2 ([3]). For any two protocols π1, π2 with M1,M2 messages, respectively, there exists a M -message

protocol π2, satisfying, M = max(M1,M2), such that the following holds for any corresponding input states

ρ1, ρ2:

QIC(π2, ρ
1 ⊗ ρ2) = QIC(π1, ρ1) +QIC(π2, ρ2)

Lemma 3 ([3]). For any M -message protocol π2 and any input states ρ1 ∈ D(A1
in⊗B1

in), ρ2 ∈ D(A2
in⊗B2

in),

there exists protocols π1, π2 satisfying π1(.) = TrA2
outB

2
out
◦π2(.⊗ ρ2), π2(.) = TrA1

outB
1
out
◦π2(ρ1⊗ .), and the

following holds:

QIC(π1, ρ1) +QIC(π2, ρ2) = QIC(π2, ρ
1 ⊗ ρ2)

By using additivity proved in the previous two lemmas, we get that nQIC(N , ρ, ε) = QICn(N⊗n, ρ⊗n, ε) ≤
Qn(N⊗n, ρ⊗n, ε). By dividing this inequality by n and taking limits as n goes to infinity, we get that

AQCC(N , ρ, ε) ≥ QIC(N , ρ, ε).
These proofs presented are not meant to be formal and for the interested reader, we refer to [3].

Simultaneous Message Passing

Now, we wish to consider another area of communication. In the standard model, two players can

continuously exchange information, in either direction. A more restrictive model is the simultaneous message

passing (SMP) model. Here, Alice receives an input x ∈ X and Bob receives an input y ∈ Y . Then, they

each get to send one message to a third player, the referee. Following this, the referee must output f (x, y)

with high probability. In other words, Alice and Bob must both send their messages without knowing any

information about the other’s input, and they can only send messages in one batch, unable to get any

responses back.

The deterministic communication complexity of f over a distribution µ on X × Y is denoted by D
‖
µ,ε

and is the number of bits Alice and Bob need to send to the referee for the referee to output f (x, y) with

probability at least 1 − ε when (x, y) are sampled from µ. In this case, all algorithms and protocols are

deterministic, with all randomness coming from sampling from µ.

The randomized communication complexity of a function f : X ×Y → {0, 1} is denoted by R‖ (f) and is

the number of bits Alice and Bob need to send to the referee for the referee to output f (x, y) with probability
2
3 . Here, Alice and Bob may use randomness in their algorithms, as may the referee.

The quantum communication complexity Q‖ (f) is defined analogously in terms of the qubits that Alice

and Bob need to send.

Note that the above classes assume that Alice and Bob act independently. However, we can also as-

sume that Alice and Bob might have access to shared randomness. This thus leads to variations in the

communication complexity, leading to R‖,pub (f) and Q‖,pub (f).
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We now wish to show an exponential separation between R‖,pub (f) and Q‖ (f), for a certain function f .

To do this, we will construct variations on the basic equality problem. The most important is presented

below. Given some set T ⊆ {0, 1}n, we define c̃Eq-negT as the approximate equality problem under cyclic

shifts and negations in T . This problem was originally defined in [15].

c̃Eq-negT (x, y) =


1, |σj (x)⊕ y ⊕ τ | ≤ 6n

15 for some τ ∈ T and j ∈ [n]

and |σj (x)⊕ y ⊕ τ | /∈
(

6n
15 ,

7n
15

)
∀τ ∈ T, j ∈ [n]

0, |σj (x)⊕ y ⊕ τ | ≥ 7n
15 ∀τ ∈ T, j ∈ [n]

undefined, otherwise

Here, |x| denotes the Hamming weight of a vector x, and σj refers to the j’th cyclic shift.

We also define a distribution µ
c̃Eq-negT

over X × Y . This is defined as the distribution uniform over

j ∈ [n], uniform over τ ∈ T , uniform over subsets u ∈
(

[n]
n
3

)
(the subsets of [n] with cardinality n

3 ) such that

(σj (x)⊕ τ) has equal probability of being equal to y on the indices in u.

Of particular importance will be T which are small-bias spaces.

Definition 6 (Small-Bias Space). A set T ⊆ {0, 1}n is an ε-bias space if for every set of indices S ⊆ [n]

such that S 6= ∅ ∣∣∣∣ Eτ∈T [(−1)
|τS |
]∣∣∣∣ ≤ ε

where τS is the vector obtained by taking only the indices of τ which lie in S.

It is possible to construct such small bias spaces efficiently in time poly
(
n
ε

)
. The resulting small bias

space additionally satisfies the property that for every pair τ1 6= τ2 ∈ T , |τ1 ⊕ τ2| = n
2 + o (n) [16].

Now, let us demonstrate the communication complexity of c̃Eq-negT , in both regimes we care about.

Consider first Q‖
(
c̃Eq-negT

)
. For now, fix some j ∈ [n] and some τ ∈ T . Consider the following

protocol, specified in [15]. If Alice sends 1√
n

∑n
i=1 |i〉|xi〉 and Bob sends 1√

n

∑n
i=1 |i〉|yi〉, then the referee

can transform Alice’s state into 1√
n

∑n
i=1 |σj (i)〉|xi ⊕ τσj(i)〉 using only unitary operations. After this, the

referee can apply the swap test to the received messages, and output the result. Thus, they will output 1

with probability 1
2 +

|σj(x)⊕y⊕τ |
2n . Thus, if Alice and Bob send O (log n) copies of the above superpositions,

then the referee can estimate |σj (x)⊕ y ⊕ τ | with 1
poly(n) accuracy.

Note also that the referee can “reuse” the messages for different τ and j. Thus, they can actually estimate

|σj (x)⊕ y ⊕ τ | for all j ∈ [n] and all τ ∈ T simultaneously, using only O
(

(log n)
2

+ log n log |T |
)

messages.

Thus, we see that Q‖
(
c̃Eq-negT

)
= O

(
(log n)

2
)

, as long as |T | = poly (n).

Meanwhile, in the classical case, there exists a family of small bias spaces T = T1, T2, . . . such that for

each i, Ti ⊆ {0, 1}i, Ti can be constructed in time poly (i), and R‖,pub
(
c̃Eq-negTi

)
= Ω

( √
n

logn

)
.

To see this, let n be sufficiently large and let δ = Θ
(

1
n

)
be sufficiently small. Let T be a δ-biased space

of size poly
(
n
δ

)
. This can be constructed by our earlier claim.

Now, for any given protocol P , let Al : {0, 1}n → {0, 1}r be Alice’s message function, mapping from

inputs x to the message that Alice will send. Let Bo : {0, 1}n → {0, 1}q be defined likewise.

Thus, consider the following lemma.

Lemma 4 ([15]). For sufficiently large n, there exists some δ = Θ
(

1
n

)
such that for all δ-biased spaces T of

size 2o(n), there exists some ε = Θ
(

1
|T |n2

)
such that for all protocols P which solve c̃Eq-negT in D

‖
µ
c̃Eq-negT

,ε

satisfies that

E
i1,u1

[I(Xi1 |Xu1
;Al (X))] E

i2,u2

[I(Yi2 |Yu2
;Bo (Y ))] ≥ 1

2n

where i1, i2 are sampled from [n], u1, u2 are sampled from
([n]\{i1}

2n
3

)
and

([n]\{i2}
2n
3

)
, respectively, and X and

Y are sampled from {0, 1}n, with all samplings being uniform over their domains.
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This lemma, when used alongside the construction mentioned above, gives us that there exist T such

that D
‖
µ
c̃Eq-negT

, 13

(
c̃Eq-negT

)
takes Ω

( √
n

logn

)
messages to compute. Therefore, the same results hold for

R‖,pub
(
c̃Eq-negT

)
.

Putting these results together, we thus see that there exists a problem where Q‖ has an exponential

advantage over R‖,pub. At the same time, there exist other problems such that R‖,pub has an exponential

advantage over Q‖ ([17]), so these two classes are incomparable.

Sampling Complexity

In addition to the communication complexity to compute functions, as covered in the earlier parts of the

paper, we can also measure the communication complexity of other tasks. In particular, we can consider the

sampling complexity.

Definition 7 (Sampling Complexity). The classical sampling complexity R̊ε (f,D) of a function f : X×Y →
{0, 1} with a given distribution D on X×Y is the amount of bits needed to be exchanged between two parties

to sample (x, y, z) such that the resulting distribution is at most ε away from the distribution D × f (D) in

1-norm.

The quantum sampling complexity Q̊ε (f,D) is defined analogously with regards to the number of qubits

needed.

If no distribution D is provided, it is to be taken to be uniform.

We also have, in the quantum case, the idea of generating a superposition which encodes the function

into the phase.

Definition 8 (q-Generation Complexity). The q-generation complexity Q̇ε (f, µ) of a function f : X×Y →
{0, 1}, with a given `2 distribution µ on X×Y , is the amount of communication qubits needed to be exchanged

by two players for them to generate a superposition
∑
x,y µx,y (−1)

f(x,y) |x〉|y〉 to within ε error.

If no distribution µ is provided, it is to be taken to be uniform.

Note that we can equivalently talk about the q-generation complexity of an arbitrary state |ψ〉 =∑
x,y ax,y|x〉|y〉, by asking how many communication qubits are needed to be exchanged in order to gen-

erate the state |ψ〉.
Given the above definitions, [18] then showed that we can strictly bound Q̇ε (ψ). Given a superposition

|ψ〉 =
∑
x,y ax,y|x〉|y〉, we define a matrix Mψ with entries ax,y.

Theorem 3 ([18]). If |ψ〉 =
∑
x,y ax,y|x〉|y〉 is a pure state and Mψ is defined above, we then bound Q̇ε (ψ)

via

dlogK2ε (Mψ)e ≤ Q̇ε (ψ) ≤ dlogKε (Mψ)e

where Kε (B) = min
A:‖A−B‖22≤ε

rankA.

Proof. The upper bound can be demonstrated by construction. Alice can begin by finding the singular value

decomposition U1ΣU2 of Mψ. Then, Alice can take the first k = Kε (Mψ) entries σi,i of Σ and construct a

superposition c
∑k
i=1 σi,i|i〉|i〉 where c is a normalizing factor. This uses 2 dlog ke qubits. This superposition

represents a renormalized version of the first k columns of Σ. Alice can then send the latter 2 dlog ke qubits to

Bob. Both players can then pad their qubits to the appropriate lengths and apply U1 and U>2 , respectively,

to their qubits. The resulting state |φ〉 approximates |ψ〉 to within ε error.

The lower bound is shown by considering the rank of any approximating Mφ, as seen in [19]. If |φ〉
approximates |ψ〉 to within ε error and requires l qubits to generate, then we can show that rankMφ ≤ 2l.

Meanwhile, because it approximates |ψ〉 with ε error, we know that ‖Mφ −Mψ‖22 ≤ 2ε. Thus, we see that

K2ε (Mψ) ≤ rankMφ ≤ 2l, which completes the proof.

8



We can also see some relations between the different kinds of complexity in the quantum case. In

particular, we define a product function as a function g : X × Y → M such that g (x, y) = g1 (x) g2 (y) for

some x and y.

Theorem 4 ([18]). Given a function f : X × Y → {0, 1} and a product `2 distribution µ, let D be the

classical distribution generated from µ, given by D (x, y) = |µ (x, y)|2. Then,

Q̊4
√
ε (f,D) ≤ Q̇ε (f, µ) +O (1)

Theorem 5 ([18]). Given a function f : X × Y → {0, 1} and a product `2 distribution µ, then

Q̇2ε (f, µ) ≤ 2Qε (f)

Now, we wish to apply this to the disjointness problem.

Definition 9 (The DISJk Problem). Given as input two sets S, T ⊆ {1, . . . , n}, such that each is promised

to be of cardinality k, DISJj (S, T ) = 1 if and only if S ∩ T = ∅.

Now, we wish to consider the sampling cost of DISJk under a uniform distribution.

Theorem 6 ([18]). If k = Θ (
√
n), then Q̊ε (DISJk) = O

(
log n log ε−1

)
.

Proof. To show this, we will bound Q̇ε (DISJk). By analysing the eigenspaces of MDISJk , we can see that

Kε (MDISJk) = O
(

log n log ε−1

log log ε−1

)
. Thus, we see that Q̊4

√
ε (DISJk) ≤ Q̇ε (DISJk) = O

(
log n log ε−1

)
, so

Q̊ε (DISJk) = O
(
log n log ε−1

)
.

This result can be improved further. Alice and Bob can actually sample DISJk over the distribution

D such that D is a uniform distribution over all disjoint sets S and T . In other words, Alice and Bob can

sample two sets which are guaranteed to be disjoint, with these two sets being completely distinct. This also

takes time O
(
log n log ε−1

)
. This also holds if Alice starts with some set S, and Bob wants to sample some

T such that S ∩ T = ∅.
At the same time, there exists some ε > 0 such that for k =

√
n, R̊ε (DISJk) = Ω (

√
n). Thus, we see

an exponential separation between quantum and classical sampling complexity.

Finally, we close with some words on 0-error sampling. We have a strict lower bound on 0-error quantum

sampling complexity, that Q̊0 (f,D) ≥ log rankf,D
2 −1, as shown in [18]. This can be seen by analysing the rank

of any matrix generated by l qubits of communication, and finding it to be 22l. This means that generating

Mf,D requires the requisite amount of qubits. This combines with the earlier upper bound to show that in

the uniformly distributed case, Q̊0 (f) = Θ (log rankf ).

At the same time, classically,
√
D (f) ≤ R̊0 (f) ≤ D (f), where D (f) is the deterministic communication

complexity to compute f . As such, to prove the log-rank hypothesis, it suffices to show that R̊0 (f,D) =

poly
(
Q̊0 (f,D)

)
.
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