
Attacking classical cryptosystems with quantum adversaries that

leverage Simon’s Algorithm

Karan Grewal, Xing Hu, Zhewei Sun

Abstract

This report examines how Simon’s algorithm can be used to break classical cryptosystems
in the presence of a quantum adversary. In particular, we show how to use Simon’s algorithm
to distinguish between a Feistel cipher and a random permutation, which is provably impossible
using classical queries only. We also show how to use Simon’s algorithm to break the security
of classical message authentication codes by forging message that were never queried by the
quantum attacker. Besides, we study in depth how unwanted collisions in cryptographic oracles
may affect the efficiency of Simon’s algorithm.

1 Introduction

Cryptography concerns secure communication between two parties in the presence of a third
party adversary. Many popular cryptographic systems use encryption methods in which the sender
and receiver both use the same key, known as symmetric-key cryptography. Although these crypto-
graphic systems have been proven secure against classical adversaries (i.e., whose operations can be
executed on a standard Turing machine), recent advancements in the field of quantum computation
have demonstrated how these communication channels are susceptible to adversaries that leverage
quantum computers. These quantum adversaries leverage Simon’s Algorithm [1] to break classical
cryptographic system. As many researchers are now pursuing the advent of quantum computers
for ubiquitous use, classical cryptographic systems are in at risk due to their inability to tolerate a
quantum adversary. In subsequent sections, we analyze theoretical properties of Simon’s Algorithm
and discuss how can be applied to break symmetric-key cryptographic systems, such as 3-round
Feistel networks and message authentication codes.

2 Analyzing Simon’s Algorithm

Simon’s algorithm [1] is one of the simplest quantum algorithms for period finding first proposed
by Daniel Simon in 1994. Although the original computational problem proposed by Simon has
little practical value, the algorithm can be applied to various problems with appropriate tweaks.
Here, we present the findings of [2] on how Simon’s algorithm can be modified to serve as an integral
component in quantum attacks. In particular, Simon’s algorithm assumes to operate on functions
with a very specific collision structure but it has been shown that such assumptions can be neglected
by increasing the number of iterations by a constant factor. In this section, we first present the
original Simon’s algorithm in a way that best illustrates the necessity of the assumption. We then
showcase potential issues with having unwanted collisions as well as results that guarantee a lower
bound on the success rate of Simon’s algorithm in such scenarios. Finally, we present some high
level ideas used to prove such bounds.

1

2.1 Simon’s problem and alternative formulation

Simon’s problem is a phase finding problem that is difficult to solve in a classical setting but
can be efficiently solved by quantum computers. The problem can be formulated as follows:

Simon’s Problem: Given a function f : {0, 1}n → {0, 1}n such that there exists a hidden phase
s ∈ {0, 1}n so that f(x) = f(y) iff x⊕ y ∈ {0n, s} for all x, y ∈ {0, 1}n. Find the hidden phase s.

This formulation of the problem is slightly different than the one presented in class. Instead
of having x ⊕ s = y, we have x ⊕ y = s. But since the addition and subtraction operators are
equivalent in Z mod 2, the two expressions are equivalent and so are the formulations.

To solve Simon’s problem, we run the following quantum circuit representing the Simon’s algo-
rithm:

|0〉⊗n H⊗n

Uf

H⊗n

|0〉⊗n

where H⊗n refers to applying the Hadamard gate to n qubits in parallel. Recall from class that
the n-bit Hadamard unitary can be expressed as:

H⊗n|x〉 =
1√
2n

∑
y∈{0,1}n

(−1)x·y|y〉 (1)

The dot product x · y = x1y1 ⊕ . . . ⊕ xnyn essentially computes the parity of the pairwise
multiplied elements xiyi’s.

We now analyze the circuit step by step1:

1. The first n Hadamard gates creates a uniform super position over the first set of qubits:

1√
2n

∑
x∈{0,1}n

|x〉|0〉

2. Applying the oracle unitary gives:

1√
2n

∑
x∈{0,1}n

|x〉|f(x)〉

3. Now we measure the latter n qubits in our circuit. Since these qubits are in a uniform
superposition over the image set of f , measuring these qubits will result in a value f(z) for
some z ∈ Im(f) with uniformly distributed probability. Our function f has the property that
f(x) = f(y) iff x⊕y ∈ {0n, s}, thus the pre-image of f(z) is exactly x = z and x = z⊕s. (i.e.
f(x) 6= f(z) for all other x’s). Therefore, the post-measurement state on the first n qubits
consist of exactly these two super-positions:

1√
2

(|z〉+ |z ⊕ s〉)

1We write |0〉 to represent |0〉⊗n for ease of notation.

2

4. Applying Hadamard to the post-measurement state on the first n qubits gives:

1√
2

1√
2n

∑
y∈{0,1}n

(−1)y·z|y〉+ (−1)y·(z⊕s)|y〉

=
1√
2

1√
2n

∑
y∈{0,1}n

(−1)y·z|y〉+ (−1)y·z(−1)y·s|y〉

=
1√
2

1√
2n

∑
y∈{0,1}n

(−1)y·z(1 + (−1)y·s)|y〉

where we have used the alternate formulation of H⊗n as in eq. (1).

Notice the term (1+(−1)y·s) vanishes iff y ·s = 1. Thus measuring the qubits would uniformly
randomly select a vector s ∈ {0, 1}n such that y · s = 0 (i.e. y is orthogonal to s).

We can then repeat the above subroutine O(n) times to obtain n − 1 independent orthogonal
vectors. This would allow us to uniquely determine s since we’re working with unit length vectors
in an n-dimensional vector space.

2.2 Imperfect promise due to unwanted collisions

In the above formulation of Simon’s Problem, we have assumed perfect collision in the function
f , meaning that collisions would only occur with phase s (i.e. f(x) = f(y) ⇒ x ⊕ y = s)2. This
is not a reasonable assumption to make for functions in general because collisions could happen
spuriously.

However, this may jeopardize the practicality of Simon’s algorithm as step 3 of our analysis above
relied on f having perfect collisions. Additional states |x〉 with f(x) = f(z) will be introduced after
measurement in step 3:

1√
|f−1(z)|

(|z〉+ |z ⊕ s〉+
∑
x∈Az

|x〉)

where Az = f−1(z) \ {z, z ⊕ s} contains elements where the spurious collisions happen. Conse-
quently, the qubit states after step 4 also changes accordingly:

1√
|f−1(z)|

1√
2n

∑
y∈{0,1}n

(−1)y·z|y〉+ (−1)y·(z⊕s)|y〉+
∑
x∈Az

(−1)y·x|y〉

In this case, unless y is orthogonal to s, the first two terms would still cancel out but the
additional terms remain relevant. Luckily, elements in Az are also symmetric due to the hidden
phase. Specifically, Az can be partitioned evenly into two sets A′z, A

′′
z such that if x ∈ A′z, then

x⊕s ∈ A′′z . Then, {z}∪A′z will include exactly half of f−1(z) and our quantum state then becomes:

1√
|f−1(z)|

1√
2n

∑
y∈{0,1}n

(−1)y·z|y〉+ (−1)y·(z⊕s)|y〉+
∑
x∈A′z

(−1)y·x|y〉+ (−1)y·(x⊕s)|y〉

=
1√
|f−1(z)|

1√
2n

∑
y∈{0,1}n

(−1)y·z(1 + (−1)y·s)|y〉+
∑
x∈A′z

(−1)y·x(1 + (−1)y·s)|y〉

=
1√
|f−1(z)|

1√
2n

∑
y∈{0,1}n

∑
x∈{z}∪A′z

(−1)y·x(1 + (−1)y·s)|y〉

2In class, this assumption was made implicitly by saying that the size of Im(f) is exactly 1
2
of the domain.

3

Therefore, we still have a zero measurement probability for any vector y that is not orthogonal
to s (i.e. y · s = 1). But for the orthogonal vectors, the measurement probabilities are no longer
uniformly distributed. Instead, the probability of measuring y becomes:

Pr(y) =
∑

f(z)∈Im(f)

Pr(f(z)) · Pr(y|f(z))

=
∑

f(z)∈Im(f)

|f−1(z)|
2n

·

∥∥∥∥∥∥ 1√
|f−1(z)|

1√
2n

∑
x∈{z}∪A′z

(−1)y·x(1 + (−1)y·s)|y〉

∥∥∥∥∥∥
2

=
∑

f(z)∈Im(f)

4

22n

(∑
x∈{z}∪A′z

(−1)y·x

)2

(2)

Ideally, we want the distribution over y to be uniform. The uniformity of y’s is important be-
cause Simon’s algorithm needs to efficiently extract a set of linearly independent vectors orthogonal
to s. A distribution skewed towards a subset of the dimensions may undermine our ability to do
this efficiently.

In the case without spurious collisions, we have |Im(f)| = 1
2 and A′z = ∅, thus the distribution

of y’s are uniform. Otherwise, the probability of measuring y depends on the distribution of y · x
over elements x’s in the pre-image of z. Ideally, we want y · x to be closely distributed between 0
and 1 so that none of the vectors y’s will have high measurement probability.

2.3 Probabilistic bounds on success rate

The analysis above suggests that Simon’s algorithm may not achieve successful results efficiently.
KLLNP [2] shows that by bounding the number of spurious collisions in f , it is possible to bound
the number of required iterations to be polynomial in n. We quantify collision frequency of f as
follows:

ε(f, s) = max
t∈{0,1}n\{0,s}Prx[f(x) = f(x⊕ t)]

Theorem 1 [KLLNP16] if ε(f, s) ≤ p0 < 1, then Simon’s algorithm returns s with cn queries,

with probability at least 1 − (2(
1 + p0

2
)c)n. In particular, choosing c ≥ 3

1−p0 ensures the error

probability decreases exponentially with n.

The above theorem says that the existence of unwanted collisions only brings in a polynomial
increase in the number of iterations, given that ε(f, s) is bounded away from 1. However, this is
not always true in practice as there may exist multiple phases t such that f(x) = f(x ⊕ t) for all
x. In other words, Prx[f(x) = f(x ⊕ t)] = 1 for some t and thus ε(f, s) = 1. Although we can no
longer ambiguously retrieve s in this case, it is possible to show that any vectors orthogonal to the
set of vectors returned by Simon’s algorithm is a phase of f with high probability:

Theorem 2 [KLLNP16] After cn steps of Simon’s algorithm, if t is orthogonal to all vectors ui
returned by each step of Simon’s algorithm, then Prx[f(x) = f(x⊕t)] ≥ p0 with probability at least

1 − (2(
1 + p0

2
)c)n. In particular, choosing c ≥ 3

1−p0 ensures that the probability is exponentially

close to 1.

4

For example, setting p0 = 0.99 would ensure success 99% of the time with 300 times the
number of iterations. Therefore, in either case the algorithm will return the desired result with
high probability with c = 3

1−p0 times the iterations, despite the existence of unwanted collisions.
We provide an outline of the proofs in appendix B.

3 General attack strategy based on Simon’s algorithm

The general strategy behind these attacks based on Simon’s algorithm is to start with the
encryption oracle Ek : {0, 1}n → {0, 1}n and find a new function f , call it ”Simon’s function”,
which satisfies special properties such that the period information of f can be found by Simon’s
algorithm and it’s sufficient to break the cryptographic scheme.

3.1 Simon’s function

The Simon’s function f is handcrafted from the encryption scheme Ek to be attacked and it
satisfies the following three properties:

1. ∃s, f(x) = f(x⊕ s)

2. Can be queried in superposition if an adversary has quantum oracle access to Ek.

3. The information of the string s is sufficient to break the cryptographic scheme.

3.2 Attack outline

Given encryption scheme Ek:

1. find Simon’s function f

2. use Simon’s algorithm to find s such that f(x) = f(x⊕ s)

3. use s to break Ek

4 Quantum attacker of 3-round Feistel Cipher

Some cryptographic concepts used in the following sections are provides in appendix. A

4.1 3-round Feistel construction

Let F be a pseudorandom function {0, 1}n → {0, 1}n. Let k = k1||k2||k3 be a random key with
length 3n. Let V be a 3-round Feistel scheme with internal pseudorandom function F and key
k. Denote V ’s encryption Encv. Given x ∈ {0, 1}2n, x = a||c, where a, c ∈ {0, 1}n and || is the
concatenation operator on strings, Figure 1 illustrates 3-round Feistel construction. The encryption
of x using V is as follows:

Encv(x) = Encv(a||c) = c⊕ Fk2(a⊕ Fk1(c))||(a⊕ Fk1(c))⊕ Fk3(c⊕ Fk2(a⊕ Fk1(c)))

We recall the following theorem from [3], which proved the security of 3-round Feistel against
classic adversary :

5

Figure 1: 3-Round Feistel Construction

Theorem 3 [LR88] If F is a pseudorandom function, then the 3-round Feistel construction with
internal round functions Fk1 , Fk2 , Fk3 is a pseudorandom permutation mapping 2n-bit strings to
2n-bit strings,and using a key k = k1||k2||k3 of length 3n.

Therefore, a classical adversary needs exponential number of queries to distinguish between
Feistel Cipher with 3 (or more) rounds and a random permutation.

4.2 Attack 3-round Feistel with internal pseudorandom permutations

In this section, we consider an attack to 3-round Feistel schemes where Fk1 , Fk2 , Fk2 are pseu-
dorandom permutations. This problem is first studied in [4] and then further studied in [2, 5].
The following survey is mainly based on [4].

Let α, β be two distinct fixed strings in {0, 1}n. Consider the Simon’s function f : {0, 1}n+1 →
{0, 1}n

f(b||a) =

{
α⊕ P2(a⊕ P1(α))⊕ β, b = 0

β ⊕ P2(a⊕ P1(β))⊕ α, b = 1

where b ∈ {0, 1}, a ∈ {0, 1}n.

It is easy to verify that f(x) = f(x ⊕ (1||P1(α) ⊕ P1(β))), then s = 1||P1(α) ⊕ P1(β) is the
period needed to break pseudorandomness of the 3-round Feistel scheme.

If x = 0||a,

f(x⊕ (1||P1(α)⊕ P1(β))) = f(1||a⊕ P1(α)⊕ P1(β))

= P2(a⊕ P1(α)⊕ P1(β)⊕ P1(β))

= P2(a⊕ P1(α))

= f(0||a)

If V is 3-round Feistel, f(u) = f(u′).

6

If V is truly random, s is random and f(u) = f(u⊕ s) happens only with negligible probability.

The attack based on Simon’s algorithm is as follows:

1. Initialize J = {}

2. Run Simon’s subroutine where f is the function defined above:

3. Add the measurement result j to J . If J does not contain n lineally independent j’s, then
go back to step 2. Otherwise, find an n + 1-bit string s where s0 = 1 by solving the linear
system of equations:

4. Choose an (n+1)-bit string u at random. Let u′ = u⊕s. Compute f(u) and f(u′) classically.
If they are equal, then V is guessed to be the 3-round feistel cipher. Otherwise V is guessed
to be random.

Using the same analysis as of Simone’s algorithm, the period string s will be found using O(n)
queries in expectation.

4.3 Attack 3-round Feistel with internal pseudorandom function

In this section, we consider an attack to 3-round Feistel scheme where Fk1 , Fk2 , Fk2 are pseu-
dorandom functions. The generation from internal pseudorandom permutation to pseudorandom
function is studied in [2, 5].

When generalizing to 3-round Feistel scheme with internal pseudorandom functions, there might
be multiple s’s such that f(x) = f(x⊕s) for the function f defined above since the internal pseudo-
random functions Fk1 , Fk2 , Fk3 may not be bijective.3 Therefore, f doesn’t satisfy the requirement
of Simon’s algorithm which requires unique s. This issue increases the probability of not finding n
linearly independent vectors using O(n) queries.

[5] and [2] both addressed this issue. In [5], after each subroutine, the attacker also checks if
there are already 2n vectors in J but no n linearly independent vectors. If so, stop and guess V to
be 3-round Feistel construction. Provably, if V is a random function, the probability that V has
no n linearly independent vector after 2n round is negligible. In [2], they proved that ε(f, 1||s) < 1

2

3 With internal permutations, s ∈ {0, 1||p1(α)⊕ p1(β)} are the only strings such that f(x) = f(x⊕ s).

7

with overwhelming probability if V is a random function.

These two solutions have similar ideas that while generating from permutation to function may
bring unwanted collisions, the probability that Simon’s algorithm is influenced by these collisions
is negligible.

5 Applications to Message Authentication Codes

In this section, we present applications of Simon’s algorithm to forge messages. A message
authentication code (MAC) is used to guarantee the authenticity of a message. If Alice wants
to send a message m to Bob, she feeds a key k and message m to an algorithm that computes
t = MACk(m). Bob then receives (m, t) and can verify if t is the correct tag for message m by using
the same key k to query the MAC algorithm.

5.1 Forging tags of fixed-sized messages

A cipher block chaining message authentication code (CBC-MAC) is one of the earliest imple-
mentations of a MAC. CBC-MACs use block ciphers, deterministic algorithms that act on an n-bit
block, as an encoding scheme. If Alice wants to send the message m = m1|| . . . ||m` to Bob where
each mi consists of n-bits and there are ` such blocks, the CBC-MAC encoding scheme is

x0 = 0n, xi = Ek(xi−1 ⊕mi), CBCMACk(m) = Ek(x`)

where each Ek is a block cipher that is determined by the secret key k agreed upon by Alice and
Bob4. This way, Alice computes t = CBCMACk(m) and sends (m, t) to Bob who then verifies if t
is the correct tag for the message given k. Figure 2 illustrates this encoding process.

Figure 2: The CBC-MAC encoding scheme for a message m = m1||m2||m3 that has three blocks.

We now show how to break the CBC-MAC encryption scheme, as first shown in [2] and [5]. Here
we assume the quantum adversary has access to the oracle Ek and consider only n-bit messages m
preceeded by a prefix α0. Fix another n-bit block α1 and define the function f : {0, 1}× {0, 1}n →
{0, 1}n by

b, x 7→ CBCMAC(αb||x) := Ek(Ek(x⊕ Ek(αb))).

Notice that f(b, x) = f(b′, x′) iff x⊕ Ek(αb) = x′ ⊕ Ek(αb′). There are 2 cases:

- Case a. If b = b′, then x⊕ x′ = 0n which implies x = x′.

4Note that here x0 = 0n denotes a classical n-bit string.

8

- Case b. Otherwise if b 6= b′, then WLOG, x⊕Ek(α0) = x′⊕Ek(α1) and since we are working
with addition mod 2, x⊕ x′ = Ek(α0)⊕ Ek(α1).

The function f thus satisfies for all b, b′ ∈ {0, 1} and for all x, x′ ∈ {0, 1}n, f(b, x) = f(b′, x′) iff
x = x′ ⊕ Ek(α0) ⊕ Ek(α1). By applying Simon’s algorithm, the n bits s = Ek(α0) ⊕ Ek(α1) are
retrieved despite not knowing the prefix α0.

Now the quantum adversary wants to forge m and send it to Bob. For this, it needs to compute
the tag t = CBCMAC(α0||m) := Ek(Ek(α0) ⊕ m). Thanks to Simon’s Algorithm, the quantum
adversary can generate this tag by querying α1||m⊕ s as follows:

CBCMAC(α1||m⊕ s) = CBCMAC(α1||m⊕ Ek(α0)⊕ Ek(α1))

= Ek(Ek(α1)⊕m⊕ Ek(α0)⊕ Ek(α1))

= Ek(Ek(α0)⊕m)

= t.

The quantum adversary has thus generated the correct tag for the message α0 ‖ m without
knowing the prefix.

5.2 Forging tags of non-queried messages

The typical notion of secure encryption scheme states that it is quantum secure if there is
no quantum adversary that make only q queries yet still produces q + 1 valid tags. Instead of
invalidating this definition of security, we will show that the CBC-MAC encryption scheme is not
quantum secure because a quantum adversary can forge the tag of a message without querying
it. Let m = m1 ‖ . . . ‖ m` be a message of variable size which has length `n bits. Define
fj : {0, 1} × {0, 1}n → {0, 1}n as

b ‖ x 7→ CBCMACk(αb ‖ 0(j−1)n) := Ek(Ej
k(αb)⊕ x)

where Ej
k denotes j applications of the oracle Ek. The function fj essentially computes the tag of a

message in which all but the jth block are necessarily 0n. Similar to result in the previous section,
fj satisfies f(b, x) = f(b′, x′) iff x = x′ or x = x′ ⊕ Ej

k(α0) ⊕ Ej
k(α1). Thus a quantum adversary

can apply Simon’s algorithm to obtain sj = Ej
k(α0)⊕ Ej

k(α1).
The quantum adversary can produce a valid tag for the message m∗ = α1 ‖ s1 ‖ . . . ‖ s`−1 as

follows:

1. Apply Simon’s algorithm a total of `− 1 times (to each fj where the query uses input mj) to
obtain sj for j = 1, . . . , `− 1.

2. Query the messages comprising all zeros 0(`−1)n to get two tags t0 = CBCMACk(α0 ‖
0(`−1)n) = E`

k(α0) and t1 = CBCMACk(α1 ‖ 0(`−1)n) = E`
k(α1).

3. Forge the desired tag t as t = t0 if ` is even, and t = t1 is ` is odd.

Now we show that t is the correct tag for m∗ by induction.

Base Case. If ` = 2, then

CBCMACk(α1 ‖ s1) = Ek(Ek(α1)⊕ s1)
= Ek(Ek(α1)⊕ Ek(α0)⊕ Ek(α1)))

= E2
k(α0)

= t0.

9

Otherwise if ` = 3, then

CBCMACk(α1 ‖ s1 ‖ s2) = Ek(Ek(Ek(α1)⊕ s1)⊕ s2)
= Ek(Ek(Ek(α1)⊕ Ek(α0)⊕ Ek(α1)))⊕ s2)
= Ek(E2

k(α0)⊕ E2
k(α0)⊕ E2

k(α1))

= E3
k(α1)

= t1.

Hypothesis. Assume CBCMACk(α1 ‖ s1 ‖ . . . ‖ s`−1) = E`
k(αb) where b = 0 if ` is even and

1 if ` is odd.

Induction Step. If ` is odd and `+ 1 is even, then

CBCMACk(α1 ‖ s1 ‖ . . . ‖ s`) = Ek(Ek(. . . Ek(Ek(α1)⊕ s1) . . .)⊕ s`−1)⊕ s`)
= Ek(E`

k(α1)⊕ s`)
= Ek(E`

k(α1)⊕ E`
k(α0)⊕ E`

k(α1))

= E`+1
k (α0)

= t0.

A similar induction step proves that CBCMACk(m∗) = t1 if ` is even and `+ 1 is odd. In summary,
a quantum adversary can therefore forge the tag of a message α1 ‖ s1 ‖ . . . ‖ s`−1 without actually
querying it. Simon’s Algorithm can also be used to break others MACs, such as parallelizable
MACs, where an encryption code is computed for each message block in parallel, and randomized
MACs, where the block cipher is a hash function [2].

6 Conclusion

We have shown that some classical cryptographic systems are easily susceptible to attacks
by quantum adversaries. These adversaries could leverage Simon’s Algorithm to devise efficient
quantum attacks that jeopardize the security of 3-round Feistel networks and various types of
message authentication codes. As it stands, not all symmetric key cryptographic systems are ready
for the post-quantum world and future work is needed to ensure privacy and protection against
malicious parties with access to quantum computational resources.

References

[1] D. Simon. On the power of quantum computation. SIAM Journal on Computing, 26(5):1474–
1483, 1997.

[2] Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-Plasencia. Breaking sym-
metric cryptosystems usingquantumperiod finding. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology – CRYPTO 2016, pages 207–237, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

[3] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM Journal on Computing, 17(2):373–386, 1988.

10

[4] H. Kuwakado and M. Morii. Quantum distinguisher between the 3-round feistel cipher and the
random permutation. In 2010 IEEE International Symposium on Information Theory, pages
2682–2685, June 2010.

[5] Thomas Santoli and Christian Schaffner. Using simon’s algorithm to attack symmetric-key
cryptographic primitives. Quantum Info. Comput., 17(1-2):65–78, February 2017.

11

Appendix A Basic Cryptographic concepts

The typical security proof is to prove that a cryptographic scheme is indistinguishable from an
ideal scheme, which is random. The following cryptographic concepts are frequently used in the
survey.

Definition A.1. Cipher/Encryption scheme [Informal]
A cipher/encryption scheme is a pair of algorithms that create the encryption, which is the process
of converting ordinary information (called plaintext) into unintelligible form (called ciphertext) and
the reversing decryption, which is moving from the unintelligible ciphertext back to plaintext.

Definition A.2. Pseudorandom Function Family [Informal]
A pseudorandom function family F , is a collection of efficiently-computable functions which emu-
late a random oracle in the following way: no efficient algorithm can distinguish (with significant
advantage) between a function chosen by random key k from F and a random oracle (a function
whose outputs are fixed completely at random).

Definition A.3. Pseudorandom Permutation5 Family [Informal]
A pseudorandom permutation family F , is a collection of efficiently-computable permutations which
cannot be distinguished from truly random permutations by any efficient procedure that can get
the values of the permutations at arguments of its choice.

Appendix B Outline for proofs in Section 2.3

In this section, we present some high level ideas used to prove the results outlined in section 2.3.
In the interest of space, we omit the full proofs given in the Appendix of KLLNP16.

1. Let t ∈ {0, 1}n and let t⊥ be the set of all vectors orthogonal to t (i.e. t⊥ = {y ∈ {0, 1}n s.t.
y · t = 0}. Assuming t 6= 0, then |t⊥| = 1

2 |{0, 1}
n| = 2n−1.

Since t is non-zero, we can view this as solving a linear system with 1 equation, thus reducing
the dimensionality by 1. Thus the set t ⊥ has 2n−1 elements in total.

2. Let x ∈ {0, 1}n and let Ei = {y ∈ t⊥ s.t. y · x = i}. Then |E0| = |t⊥| if x = 0 or x = t,
otherwise, |E0| = |t⊥|/2
Similar to the previous case, except we now have two equations to constrain our space: y ·t = 0
and y · x = 0. Since x is non-zero and x 6= t, the two equations are linearly independent,
therefore resulting in a subspace of dimension n− 2 with 2n−2 elements.

3. For the function g(x) = 1
2n
∑

y∈t⊥(−1)x·y, for any x, we have g(x) = 1
2(δx,0 + δx,t) where δ

denotes Dirac delta.

This result follows from (2) by partitioning t⊥ into E0 and E1. Intuitively, this lemma shows
how interference behaves over the entire set of orthogonal vectors t⊥ and how the phases
cancel themselves out.

4. Let y be the vector returned by Simon’s subroutine, then the probability that it is orthogonal
to some random vector t ∈ {0, 1}n is bounded away from 1. Specifially, we have:

5A permutation is a bijection function with its domain and co-domain equivalent.

12

Pry[y · t = 0] =
1

2
[1 + Prx[f(x) = f(x⊕ t)]]

This result can be derived from the final circuit state before measurement by applying (3)
and Theorem 1 follows from it. Recall we wanted an even distribution for the expression y ·x
in eq 2 where y is the measured state and x is a random element in the pre-image of f. This
result gives us the desired result when ε(f, s) >= Pr[f(x) = f(x⊕ t)] is bounded

5. Let t ∈ {0, 1}n and pt = Prx[f(x) = f(x ⊕ t)]. Then the probability that all cn vectors
measured from running Simon’s subroutine will be orthogonal to t is equal to (1+pt

2)cn.

This result follows from (4) because we assume that the vectors ui’s obtained from Simon’s
subroutine are independent. Thus the probability cen be obtained by simply exponentiating
(4). This completes the proof for Theorem 2.

13

	Introduction
	Analyzing Simon's Algorithm
	Simon's problem and alternative formulation
	Imperfect promise due to unwanted collisions
	Probabilistic bounds on success rate

	General attack strategy based on Simon's algorithm
	Simon's function
	Attack outline

	Quantum attacker of 3-round Feistel Cipher
	3-round Feistel construction
	Attack 3-round Feistel with internal pseudorandom permutations
	Attack 3-round Feistel with internal pseudorandom function

	Applications to Message Authentication Codes
	Forging tags of fixed-sized messages
	Forging tags of non-queried messages

	Conclusion
	Basic Cryptographic concepts
	Outline for proofs in Section 2.3

