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1 Overview

In the last lecture we made the transition from discussing the foundations of quantum computing
to discussing the frontiers, beginning with Grover’s Search Algorithm, Hamiltonians, and open
quantum systems. In this lecture we explored the topic of quantum machine learning. At the
beginning of this lecture, Peter Wittek from the Rotman School and Creative Destruction Lab
introduced the foundations of quantum machine learning and defined realistic expectations of the
subject. Afterwards, Henry Yuen lectured about the HHL algorithm.

2 Quantum Machine Learning

Peter Wittek’s lecture on quantum machine learning began by defining what classical machine
learning is before transitioning to how quantum physics is incorporated into the subject. He first
mentioned that quantum machine learning is a very heated subject, as it encompasses both quantum
computing and machine learning. He stated that his goal was to define what one could realistically
expect from quantum machine learning in its current state.

2.1 Classical Machine Learning

In essence, classical machine learning can be defined by four distinct key elements:

1. Optimization

2. Identifying patterns and data

3. Making predictions

4. Training.

The term machine learning was originally coined in the late 1950’s as a means to describe a field
of artificial intelligence and statistical inference.

2.2 The Roots of Classical Machine Learning

As stated previously, classical machine learning has its roots in the following two fields:
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1. Artificial intelligence

2. Statistical inference.

With respect to classical machine learning, artificial intelligence is a means of codifying knowl-
edge as logic, and statistical inference is observing how some parameter, θ, scales with a number
of samples, N.

From artificial intelligence, many complexities arise. In particular, Peter Wittek talked about
model complexity.

2.3 Model Complexity and the Vapnik-Chervonenkis (VC) Theorem

One particular kind of complexity in classical machine learning discussed by Peter Wittek was
model complexity. In particular, if there is a model consisting of two different kinds of points,
those points can be separated by a hyperplane, as shown below.

Here, we can see that the two crosses are separated from the square by a single hyperplane, repre-
sented by the diagonal line. The complexity of this model, also called the VC dimension, can be
expressed as follows:

h(hyperplane) = d+ 1

where d is the number of free variables.

Note that, for a model consisting of an arbitrarily large number of points, a sine function with a
correspondingly large frequency can be chosen as a hyperplane such that it separates each of the
points. This concept is illustrated in the graphic shown below.

Note that each wavelength of the sine function separates two points. It follows that the VC
dimension of a sine function with arbitrary frequency α is:
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h(sinαx) =∞

The concepts above serve as a foundation for the Vapnik-Chervonenkis (VC) Theorem, which
defines a probabilistic upper bound on the test error of a classification model. Mathematically, the
VC Theorem can be expressed as follows:

P (E ≤ EN +

√
h(log 2N

h − log η
4

N
) ≥ 1− η

where E is the test error, EN is the training error, N is the sample size, and η is a parameter such
that 0 < η < 1.

For a sample, S = {(xi, yi)}Ni=1, where xi ∈ R, yi ∈ {0, 1}, we can define the training error as
follows:

EN =
1

N

N∑
i=1

(f̂(xi)− yi)2

where f̂(xi) is an arbitrary function of xi.

In closing of the subject of complexity, Peter Wittek stated that classical machine learning is a
“balancing act” between three aspects of complexity:

1. Computational complexity

2. Sample complexity

3. Model complexity.

Wittek also stated that state of the art machine learning comes from principles of deep learning,
such as:

• Supervised learning

• Discriminative problems

• Determinism, and

• Parallelizability of neural networks.

3 Paradigms of Quantum Machine Learning

Peter Wittek discussed three paradigms of quantum computing: the Gate Model, Quantum
Annealing, and Quantum Simulators.
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3.1 The Gate Model

The Gate Model paradigm of quantum machine learning is, in essence, what we’eve already been
dealing with in this course. The Gate Model deals with qubits and examines photonic circuits
which deal with qumodes.

3.2 Quantum Annealing

In essence, Quantum Annealing is a means by which a global minimum is found from a set of
potential candidates for some object function. In a classical system, annealing can be represented
by the following example.

Suppose you have three magnets, with their poles oriented as shown below.

One can apply an external magnetic field to the system such that, if it’s strong enough, it can flip
the polarity of the magnets.

As can be seen from the image above, the applied magnetic field, B , is strong enough to flip the
polarity of the middle magnet from −1 to +1.

The Ising Model can be used to model the total energy of the system. Mathematically, the Ising
Model can be represented as follows:

H =
∑
i,j

∃i,jσiσj +
∑
i

hiσi

where H is the Hamiltonian and ∃i,j is the interaction between states σi and σj . The Ising Model
looks to minimize H in order to get the lowest energy configuration.
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When dealing with quantum mechanical systems, the Ising Model becomes:

H =
∑
i,j

∃i,jσzi σzj +
∑
i

hiσ
z
i

where the σ’s are now replaced with σz’s, which are Pauli Z matrices.

Recall:
σz|0〉 = |0〉

and
σz|1〉 = −|1〉.

In order to implement Quantum Annealing, let’s start with the Hamiltonian in the ground state:

H0 =
∑
i

σxi

where σx is the Pauli X matrix.

Recall:
σx|0〉 = |1〉

and
σx|1〉 = |0〉.

Note that, in the ground state

H0 = |+〉1 ⊗ |+〉2 ⊗ · · · ⊗ |+〉i.

In the first excited state, the Hamiltonian becomes

H1 =
∑
i,j

∃i,jσzi σzj +
∑
i

hiσ
z
i

From the expressions for H0 and H1, we obtain the expression for the (simple) composite time-
dependent Hamiltonian for idealized quantum computing:

H(t) = (1− t)H0 + tH1

where t ∈ [0, 1]. The general expression for H(t) can be written as follows:

H(t) = f(t)H0 + g(t)H1

where f(t) and g(t) are functions such that f(t)+g(t) = 1. The expression f(t)+g(t) = 1 is known
as the annealing schedule.

Within H(t) there are many excited states and ground states, however, the aim of quantum an-
nealing is to find the smallest energy gap between an excited state and a ground state.
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3.3 Quantum Simulators

Quantum Simulators are not as universal as the Gate Model or Quantum Annealing as quantum
simulators are very difficult (if not, impossible) to implement without a working quantum computer.

4 Quantum Software Stack

Problem

Quantum
Algorithm

Quantum
Circuits

Quantum
Compiler

QPU Simulator

ML

Travelling Salesman Problem

Grover’s
QAOA

Ising Model

controlled unitary decomposed to gates
gates translation

embedding for topology issue

Figure 1: Quantum software stack and machine learning

When it comes to how the quantum software stack is integrated with machine learning, we can see
from the figure above that machine learning techniques can be applied at each stage of quantum
software stack to solve the challenges in individual domains. Thus, it became the Quantum Machine
Learning.

There are still challenges in implementing these quantum software stacks, and we will be looking
at a particular issue in the quantum compiler stage. In figure 2, with four qubits in a plane, you
can fully connect all of them without crossing any two connections. However, by adding one more
qubit to the design will cause a crossing to happen (the dotted line would always intercept with
an existing connection) unless you begin to swap qubits. We could in fact swap the positions of
qubits to avoid crossing by utilizing C-NOT gates. In the case of swapping 3 qubits, you would
need (3+1+3) = 7 gates to realize it. In the current state of quantum computers, using 7 gates to
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Figure 2: Superconducting share the same topology issue

swap 3 qubits takes up too many valuable resources.

5 Quantum Enhanced Machine Learning

We have two different protocols: the first protocol tries to convert between the classic data and
quantum data, whereas the second protocol works fully within quantum world without conversions.

Protocol 1:
classical data→ Quantum stuff → classical data

This protocol assumes a short time of period for the quantum stuff to run in the quantum computers.

Protocol 2:
Q data→ Quantum stuff → Q data

Two examples for the quantum stuff in this protocol are exponential speedup and HHL core algo-
rithm [1]. However, based on the paper ”Bayesian Deep Learning on a Quantum Computer”[2],
HHL is still unrealistic at the moment.

6 Optimization

The quantum annealing is one way to obtain the smallest energy gap between two states:

H = (1− t)H0 + tH1
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where t ∈ [0, 1] We could always find a way of bridging between finding this smallest energy gap
and finding the optimal solution for a hard classic question.

6.1 Quantum Approximate Optimization Algorithm(QAOA)

Let’s assume we have a quantum state space, in which we have two
Hamiltonians(describing only local effects) in the ground states: H0

and H1. They are describing two different sets of constraints in the
system. By slowly adjusting in the ground state H0 and H1 under
a discrete way, we could reach the state of the final Hamiltonians
where an approximation exists.

We first define an alternating sequence of operations to our Hamil-
tonians H0 and H1. We are considering within a radius of p in the
Hamiltonians:

P : U(H1) . . . U(Hp)

and

U(Hi) = U(H0, βi)U(H1, γi)

where β and γ are angles to tell us how long to apply the above operators.

H0 =
∑

σxi

Researches on finding the optimal sequence of the operators are ongoing. Some work related to use
gradient decent has been done. But the results are unclear.[4]

7 Quantum Machine Learning with Ensemble Methods

The ensemble method takes a bunch of ML classifiers that try to solve the same problem together,
and aggregate them by assigning weights to each individual to make a prediction. QBoost [3] is an
application to use a type of ensemble method and provides an option to improve QML.

8 Sampling

Assume we have the following system where interactions are happening between the system S and
the environment E.

Thermal State:

P (Ei) =
1

Z
e−
Ei
T

where Ei is the energy, and T is the temperature.

Partition function:
Z =

∑
e−
Ei
T

We call this distribution the Boltzmann distribution.
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9 Probabilistic Graphical Models

Probabilistic Graphical Models

Directed networks

Bayesian

Undirected networks

Markov(≈ Boltzmann distribution)

We show a special case for a Markov network where it is essentially the Boltzmann machine.

x1 x2

x3

Figure 3: A simple Markov network

If we define the xi = {+1,−1}, it becomes a Ising model and also a Boltzmann Machine.

10 Restricted Boltzmann Machine(RBM)

The figure represented a Restricted Boltzmann Machine. It consists of m visible units V =
(V1, V2, . . . , Vm) to represent observable data and n hidden units H = (H1, H2, . . . ,Hn) to be
the latent variables. Each unit in the visible layer is fully connected to all the units in the hidden
layer and vice versa. However, units in the same layer are not connected to each other, and this is
why it is called the Restricted Boltzmann Machine. In terms of probability, without connections
in the same layer makes the units independent from others.[5]
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Hidden (H)

Visible (V )

Figure 4: A restricted Boltzmann Machine

We have the probability distribution P :

P (V) =
∑
H

P (H,V) =
∑
H

1

Z
e−
E(H,V)

T

and the Partition function:
Z =

∑
e−
Ei
T

and energy function E .

E(H,V) =
∑

Wijhivj +
∑

aivi +
∑

bjhj

where Wij is the coupling, a weight between unit hi and unit vj . ai is the field(bias) on vi and bj
is the field(bias) on hj .

11 The Harrow-Hassidim-Lloyd Algorithm

The Harrow-Hassidim-Lloyd (HHL) algorithm is an algorithm that “solves” exponentially large
linear systems in polynomial time. The main idea behind HHL is the following: It looks like
quantum computing is nature’s way of doing linear algebra with exponentially large vectors and
matrices, so lets put that to use!

11.1 The Problem

Given a matrix A ∈ RN×M , and a vector b ∈ RN , we can ask for a solution to the system of linear
equations

Ax = b

that is an x ∈ RM which satisfies the above equation, if such an x exists.
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In our case, for simplicity we will assume that N = M and A is invertible. Under this assumption

x = A−1b

so the problem reduces to inverting A. To solve this problem using quantum computing we will
want to represent both the input and outputs as quantum states. Thus we assume that b is given
in the form |b〉 as a logN qubit state, and the goal is to produce an approximation of the following
quantum state:

|x〉 =
A−1|b〉
‖A−1|b〉‖

This is the solution to the linear system Ax = b in “quantum form.

Solving systems of linear equations is one of the most basic problems you can imagine, as well as
one of the most important. The HHL algorithm allows us to approximately “solve” this problem in
polylog(N) time, given several assumptions are met. This is exponentially faster than any classical
algorithm for solving linear systems (which must take at least poly(N) time), but this is not, strictly
speaking, a completely fair comparison, because the way the data is represented. Furthermore, the
HHL algorithm also requires a few assumption to be satisfied in order to achieve the polylogarithmic
running time. Thus you win some, you lose some.

The first major assumption is that the vector |b〉 is given in quantum state form. How do we obtain
such a quantum state? If the vector b is first presented classically, then one can in principle generate
the logN qubit state |b〉, but this process would take at least Ω(N) time. Furthermore, we also
assume that the HHL algorithm is able to access multiple copies of |b〉, which is necessary because
of the No-Cloning Theorem.

Next, the fact that |x〉 is given in a quantum state means that we’re not getting a solution to the
linear system in the traditional sense; in general it is difficult to obtain information about |x〉 such
as a fixed entry of the vector. If we measure |x〉 in the standard basis we will get one of N classical
bit string states and won’t be able to ascertain anything about the coefficients of |x〉. We could try
to repeat the algorithm many times and measure the solution until we can obtain some statistical
data about |x〉, but the number of times one would have to repeat the algorithm in order to obtain
enough data to estimate a particular entry of |x〉 will, in general, void our exponential speedup
(unless that particular entry had very large magnitude relative to the other entries).

But there is still hope that the algorithm can be used as a subroutine in another quantum algorithm.
Generally when we are interested in solving linear systems of equations we don’t just want the
solution, but we want to do something with the solution. For example after using HHL perhaps
we would want to compute 〈x|G|x〉 for some other matrix G – if G is an efficiently implementable
measurement, then we could estimate this quadratic form efficiently.

This would be like the use of the Quantum Fourier Transform. Even though the Fourier transform
is given as a quantum state in which it is difficult to extract any particular Fourier coefficient, it is
still remarkably useful for solving problems like factoring integers. If the algorithm using HHL also
has an efficient way to generate the |b〉 needed during HHL then the representation of the data is
no longer an issue, and could in-fact be seen as a benefit.

11.2 The Set Up

Now we will list the assumptions we’ll need for the algorithm to work
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1. A is a Hermitian matrix (as well as square and invertible as previously assumed).

2. If λ1 ≤ . . . ≤ λN are the eigenvalues of A, we assume that minj |λj | ≥ α, and maxj |λj | ≤ 1

3. The algorithm has access to many copies of |b〉 as a quantum state.

4. The algorithm is given the ability to implement the unitary e−iAt for any value of t such that
0 ≤ t ≤ polylogN .

Assumption 1 can be relaxed and assumption 2 is reasonable, but assumptions 3 and 4 are quite
strong. We will discuss the implications of these assumptions more after presenting and analyzing
the algorithm.

For the algorithm we will need an algorithmic primitive which was discussed in lecture 4; phase
estimation. To recall, given a unitary U and one of it’s eigenvectors |ψj〉 in a quantum state we
know that U |ψj〉 = eiθjU |ψj〉 for some θj but we don’t know what θj is. If we are able to apply

controlled-U2k for a wide range of k then we can estimate the value of θj .

More precisely the phase estimation circuit takes the input state |ψj〉|0〉⊗ l (where l = O(logN)) to
the state |ψj〉|θ̃j〉, where |θ̃j〉 is length l binary expansion of an approximation of θj . For simplicity
we will assume that phases estimation works exactly, and ignore approximation errors.

11.3 The Algorithm

The algorithm uses the following basic subroutine:

|b〉
Phase Estimation of U = e−iA Inverse of Phase Estimation Circuit

|0〉⊗ l
R

|0〉

where |b〉 is n-qubit state. We call the first n qubits |b〉 the “eigenvector register”, the next l qubits
the “eigenvalue register” and the last qubit the “flag register”.

The unitary R is defined by

R(|λ〉 ⊗ |a〉) =

{
|λ〉 ⊗ (Rλ|a〉) if λ ≥ α
|λ〉 ⊗ |a〉 otherwise

where |λ〉 is an l-qubit state, and

Rλ =

√1− α2

λ2
−α
λ

α
λ

√
1− α2

λ2


(i.e Rλ is just a rotation of the qubit by arcsin α

λ ).

Now let’s analyze this basic subroutine:

|Ψ0〉 = |b〉︸︷︷︸
n qubits

⊗ |0〉⊗`︸ ︷︷ ︸
` qubits

⊗ |0〉︸︷︷︸
1 qubit
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We’re going to perform phase estimation of the vector |b〉 with respect to the unitary e−iA, we need
to understand the eigenvectors and eigenvalues of it.

Recall the spectral theorem from last time.

∃ orthonormal basis for CN : {|u1〉, ..., |uN 〉}, and real eigenvalues: λ1 ≤ ... ≤ λN s.t.

A =
∑
j

λj |uj〉〈uj |

By our assumption on A,
min
j
|λj | ≥ α > 0

and
max
j
|λj | ≤ 1.

Then,

e−iA =
∑
j

e−iλj |uj〉〈uj |

and

A−1 =
∑
j

1

λj
|uj〉〈uj |.

Returning to the phase estimation, by the orthonormality of the basis, we can write

|b〉 =
∑
j

bj |uj〉,

s.t.
∑
j

|bj |2 = 1.

C|b〉|0〉⊗` = C
∑
j

bj |uj〉|0〉⊗`

=
∑
j

bjC
(
|uj〉|0〉⊗`

)
=
∑
j

bj |uj〉|λj〉,

where |λj〉 is a binary expansion of the eigenvalue λj . For simplicity, we’re going to pretend this is
exact and not an approximation. We can deal with these errors later.

Then,

|Ψ1〉 =
∑
j

bj |uj〉|λj〉|0〉,

|Ψ2〉 =
∑
j

bj |uj〉|λj〉

(√
1− α2

λ2j
|0〉+

α

λj
|1〉

)
.
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At this point, we run the inverse of the phase estimation circuit. This is typically referred to as
“uncomputing” in quantum information literature.

|Ψ3〉 =
∑
j

bj |uj〉|0〉⊗`
(√

1− α2

λ2j
|0〉+

α

λj
|1〉

)
.

We now measure the last qubit.

=

(∑
j

bj

√
1− α2

λ2j
|uj〉|0〉⊗`

)
|0〉+

(∑
j

bj
α

λj
|uj〉|0〉⊗`

)
|1〉

Partial measurement rule: Probability of obtaining outcome |1〉 is∣∣∣∣∣∣∑
j

bj
α

λj
|uj〉|0〉⊗`

∣∣∣∣∣∣2 = p.

This is already written as a linear combination of orthogonal vectors. So the norm is just sum of
squares of the amplitudes in front:

=
∑
j

∣∣∣bj α
λj

∣∣∣2
=
∑
j

|bj |2
α2

λ2j

≥
(∑

j

|bj |2
)
α2 = α2.

Conditioned on outcome being |1〉, we get that the post measurement state is:

1
√
p

∑
j

bj
α

λj
|uj〉 ⊗ |0〉⊗` ⊗ |0〉

=
α
√
p

(∑
j

bj
λj
|uj〉

)
⊗ |0〉⊗` ⊗ |0〉

=
α
√
p

(
A−1|b〉︸ ︷︷ ︸

our desired |x〉!

)
⊗ |0〉⊗` ⊗ |0〉.

Thus, the Basic Subroutine, if when we measure the flag qubit we get the state 1 (which we get
with prob ≥ α2), we actually have the desired solution state in the first register! We have solved
the problem.

If we measure 0, then we just throw everything away and try again. How many times do we have
to repeat? O( 1

α2 ) times.

If the ratio between the smallest eigenvalue and the largest eigenvalue of A is not too small, then
we don’t have to repeat that many times in order to get our solution vector with high probability.

The complexity of this problem is thus O(polylog N · 1
α2 ).

Now, let us return back to the assumptions we established. Some of them are not so bad.
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1. A is full rank and Hermitian

• Full rank: Kind of necessary if we want to guarantee that Ax = b has a solution. If |b〉
is in the range of A then we can also drop this assumption.

• Hermitian: Via a trick, we can assume this without loss of generality because solving
Ax = b is equivalent to solving: (

0 A
A† 0

)
︸ ︷︷ ︸

Ã∈R(N+M)×(N+M)

x̃ =

(
b
0

)
︸︷︷︸

b̃∈RN+M

where:

A ∈ RN×M

x ∈ RM

b ∈ RN .

Any solution x̃ to Ãx̃ = b̃ will be such that x̃ =

(
x
...

)
has Ax = b.

2. Bounds on the eigenvalues

• Why can we assume λmax(A) ≤ 1? If not, just work with Ã = A
λmax(A)

and b̃ = b
λmax(A)

instead.

• What about λmin(A) ≥ α? This condition is also known as saying that A is a well-
conditioned matrix.

In classical computer science and in numerical algorithms, A being a well-conditioned matrix
is usually needed anyway since if the minimum eigenvalue is too small, then A gets too close
to being a non-invertible matrix and that causes all sorts of problems. Thus, these are so far
mild conditions.

3. Algorithm has ability to efficiently implement e−iAt for a range of t
The expression e−iAt should look familiar. This is the solution to the Schrödinger equation
where we interpret A as a Hamiltonian!

i
d|Ψ〉
dt

= A|Ψ〉 |Ψ(t)〉 = e−iAt|Ψ(0)〉

This is pretty cool. In order to solve this exponentially large linear system, we have to essen-
tially simulate the dynamics of a ”Hamiltonian” defined by our system.

How do we actually implement e−iAt? It depends on how A is specified. We can’t be given
A explicitly, since it takes too long to write down A. Instead, we have to make several as-
sumptions about A. There are a few classes of As that allow us to efficiently implement e−iAt.

One is that A is sparse: i.e each row of A contains at most S � N entries, and each entry
can be computed in O(S) time.
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This is not an unreasonable class of matrices: all local Hamiltonians (i.e a sum of local terms)
are sparse matrices, so this is natural from a physics point of view.

There exist Hamiltonian simulation algorithms for sparse As:

Theorem 1. e−iAt can be implemented with error ε by a quantum circuit with size

O((logN)(log
(τ
ε

)
τ)

where τ = s2 · ||A||max · t

||A||max is the largest entry in A by magnitude.

Since t ≤ polylogN , if S � polylogN we get efficient implementation of e−iAt. We’re assuming
these entries of A are stored in Quantum Random Access Memory or QRAM. This is
a quantum data structure that allows us to query the inputs in superposition, e.g.

ΘA|i, j〉|α〉 = |i, j〉|α⊕ (jth entry of ith row of A)〉

in a fast manner, but also allows us to load data into the RAM in a fast manner. If the
loading takes N c time for some c, this will wipe out the exponential speed up of the HHL
algorithm.

An important open question is whether there are practical and feasible QRAMS to allow us
to exploit exponential speed ups of HHL or QFT, for problems where we have some external
data that we want to process. Basically, the only way we know how to exploit HHL is to
deal with As that are given not by massive quantities of data, but rather can be implicitly
computed from a much smaller piece of data.

4. We’re given vector b in quantum form |b〉
Why is this a reasonable assumption? In general, it’s not, but again you just need to look for
situations where this could naturally arise. Again. We’re going to need to assume that |b〉 is
handed to us, or we have some very efficient way of generating it from scatch. If getting |b〉
or generating it takes more than polylogN , our exponential speed up is limited.

Another major caveat is that we get our solution |x〉 in quantum form. How useful is that? Even
if we wanted to get any particular entry of |x〉, this takes ≈ N time to extract, because in general
the amplitudes of |x〉 are ≈ 1√

N
.

We will see next time some examples of problems that satisfy these caveats...

But it’s still a compelling open question: find an application of HHL.
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