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1 Introduction

Algorithms have been studied for thousands of years. While perhaps not precise by the standards of
modern mathematics, Euclid’s Elements gives algorithms for constructing shapes using a straightedge
and compass. In the twentieth century, mathematicians became interested in formalizing the intuitive
notion of an algorithm. The Entscheidungsproblem (“decision problem”), posed by David Hilbert and
Wilhelm Ackermann originally posed in 1928, asks whether there is an algorithm to determine whether
a proposition from or precludes a given set of axioms. Godel’s incompleteness result demonstrated
that such an algorithm was impossible. Turing gave an essentially equivalent answer in his 1936 paper
in which he proved the undecidability of the Halting problem.

To do so, Turing introduced an abstract machine (a Turing machine), whose functioning is taken
to define computability, and to provide a precise notion of algorithm. Church provided an equivalent
model, known as λ-calculus, that gives equivalent results. We therefore have the following definition:

Definition 1. A problem is called computable (Turing-solvable) if there exists some Turing machine
M that is able to execute the algorithm that outputs an answer to the problem.

giving rise to the Church-Turing thesis,

Proposition 1. A problem or a function is computable if and only if it is Turing-solvable.

which is closer to a definition than a theorem.
Such models of computation are defined abstractly, without any reference to physical reality or

natural laws. This raises the question of whether such laws could give rise to different models of
computation. Might there be computational speedups? How large might they be? How do the
answers to these questions depend on the natural laws (or physical parameters) of a universe? While
computer scientists generally ignore the mundane considerations of how computers physically work,
and traditionally ignore numerical factors that arise in the analysis of efficiency, it will turn out that
the laws of nature can have effects beyond those mundane considerations. While the considerations
are somewhat empirical, they change even standard results in computer science.

We shall see that such extended models of computation - hypercomputation - do in fact yield
extra computational power. In the next subsection we review the basic models of computation to
set the stage and indicate required background for what follows. In section 2 we discuss both the
limits and gains to computation due to switching from a classical to a relativistic universe. In section
3 we introduce time travel modelled through closed timelike curves (possibly understood through
the framework of general relativity, though one could propose other natural frameworks that allow
time travel). After a qualitative introduction and more technical definitions, we discuss how even
computability - not just computational complexity - is affected by time travel. In the concluding
section we sum up some take-home lessons, and suggest some further models of hypercomputation.
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1.1 Models of Computation and their Limitations

We’ve already mentioned Turing machines and λ-calculus, but before proceeding to hypercomputation,
it will be useful to mentions several other models of computation. We also note that classical circuits
provide a model computationally equivalent to Turing machines and λ-calculus.

The first of these is non-deterministic Turing machines, as contrasted with the ordinary determin-
istic Turing machines. On this model, the changing of states becomes probabilistic (or equivalently,
one can allow a deterministic Turing machine to probabilistically write symbols on the tape, which are
then read by a deterministic transition function). From a computability perspective, the two models
are equivalent, i.e., an algorithm can be simulated on a deterministic Turing machine if and only if it
can be simulated on a non-deterministic Turing machine. From a complexity standpoint, an important
class is BPP, the class of problems solvable by a non-deterministic Turing machine in polynomial time
with bounded error (this is the probabilistic analogue of P). Nevertheless, it is thought that BPP = P.

The next model is that of quantum computation. This model was first proposed (qualitatively) by
Feynman [1], with the motivation that the world was quantum, but classical models of computation
could not efficiently model quantum processes. While quantum Turing machines have been defined,
the standard model of quantum computation utilizes quantum circuits (these models were proved to
be equivalent in [2]). If (as widely suspected) quantum computers turn out to be more powerful than
classical computers from a complexity standpoint, it will be an example of the general phenomena
discussed in this paper - the revision of computational models based on physical reality.

2 Relativistic Considerations

The standard models of computation - Turing Machines, λ-calculus, classical circuits - to the extent
that they assume a model of physics at all, the model is classical. This claim can be demonstrated
by the “billiard ball” model of computation, in which classical balls bounce around to implement any
classical algorithm [3, 4]. With that in mind, we can consider how our models of computation must
change or become limited when the laws of physics change (or as we consider different laws of nature).

One such limitation arises from the (special) relativistic constraint that information cannot be
transferred through space faster than light. Thus, as computers get bigger, communication between
parts of the computer are limited by the speed of light, c. This will obviously not affect computability
- a Turing machine performs only local operations, and obeys this constraint. Nevertheless, this
does not lead to a fundamental limit even on physically realizable computation, as we have not (yet)
postulated any constraints that prevent an arbitrarily small computer. While such limits might arise
due to quantum theory, here we simply explore the limitations due to relativity.

When we add in general relativistic considerations, rigid limits can be given. One limit arises from
spatial limitations, such as the theoretical impossibility of measuring anything to a finer accuracy
than the Planck length, given by

lp =

√
h̄G

c3

≈ 1.62(10−35)m

(1)

where h̄ is the reduced Planck constant and G is the gravitational constant. Roughly speaking, con-
fining a particle (e.g. a photon) to such a small distance would require such an enormous uncertainty
in momentum that the energy density would be sufficient to create a (small) black hole [5]. There is
therefore a limit on the density of a computer (before it collapses into a black hole), and as a com-
puter gets larger (as required to avoid this collapse), the speed of light constraint becomes important.
However, such limitations are heuristic and somewhat speculative, as there is no workable theory of
physics on such scales - we therefore await a theory of quantum gravity before analyzing this limit
any further.

There is another bound that places a constraint on the amount of information that can be stored
in any region of a given size. Known as Bekenstein’s bound, it was originally argued in [6] based on
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considerations involving the second law of thermodynamics. There has been debate about the precise
formulation of the bound, but we follow the logic of the original paper; differences in numberical
constants and such details (such as those arising from accounting for quantum effects near a black
hole) do not affect the main computational conclusions. The interested readers are referred to [7] as
a starting point.

Start by taking the entropy of a black hole to be proportional to its surface area (S ∝ A/4 where
S is the entropy and A the surface area; in Planck units this is equality) and consider dropping in
a body with energy E and effective radius R. The surface area of the black hole must increase by
8πER, thereby increasing its entropy. Unless the entropy of the body is below (or equal to) 2πER
(simply divide the previous expression by 4), entropy will decrease through this process, violating the
second law. We therefore have that for any body

S ≤ 2πER =
2πkER

h̄c
(2)

where with the equality we’ve switched from natural units (k = h̄ = c = G = 1). Since entropy S
of some object is related to the amount of information I in this object via S = kI ln(2), this gives a
bound on the amount of information that can be stored in a region of radius R containing energy E:

I ≤ 2πER

h̄c ln(2)
(3)

and since E is constrained (both in practice and by the need to avoid gravitational collapse of the
computer), a computer that must work with a large amount of information will need a large volume,
and the speed of light constraint becomes relevant.

So much for relativistic constraints on computation; what about relativistic benefits for computa-
tion? Several models have been proposed to increase the computational power of computers through
harnessing relativistic effects. These are typified through by following example:

1. Program a brute-force 3SAT solver into a computer, and start the computation.

2. Go spend some time near a black hole, where time passes much slower for you than it does for
the computer.

3. Come back, and get the results of your computation: hopefully, you’ve experienced a polynomial
amount of time, while the computer has had an exponential period of time to run.

Similar “algorithms” can be cooked up using only special relativistic effects, and we discuss these
simpler cases. The analysis involving general relativity ends with the same result [5]. The main
idea is for the computation to take place in one reference frame (or on one worldline) in which more
time passes than for the observer who wants the answer to a computational problem. The Lorentz
transformation specifying the effects of time dilation is given by

∆t′ = γ(∆t)

=
1√

1− v2

c2

(∆t) (4)

where γ is the Lorentz factor. This describes a stationary computer experiencing time ∆t′ while an
observer travelling at constant speed v experiences time ∆t (we ignore the effects of acceleration, which
do not change the analysis, but are discussed below). We have ∆t′ > ∆t, giving some extra time for
the computer to operate. It is interesting to note that this procedure requires one who wished to gain
a computational speedup to do the travelling (the same is true when one tries to use gravitational
time dilation - e.g. going near a black whole slows down time, so the user must leave the computer
far away during the travels).
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While a computational speedup can be obtained from harnessing this effect, the gain in time
shown is polynomial in v. Therefore, to achieve an exponential speedup (e.g. allowing one to solve
NP-complete problems in polynomial time), one would require an exponential amount of energy - just
to achieve the required speed, since energy scales polynomially with speed. This introduces another
issue, namely that even if such energy could be found, it would require an exponential volume to
store. At that point, it would require exponential time for distant fuel to contribute (due to the speed
of light limitation), obviating the theoretically possible gain [5]. Note that this does not eliminate
the exponential gain once these speeds have been reached, but it means that one could not use this
method to run an exponential-time algorithm in polynomial time.

This discussion somewhat pushes the boundaries on the reasonableness of ignoring physical con-
straints when considering computational power. When the governing computational consideration is
about the time for fuel to contribute, the theoretical computer science issues are bound up in limita-
tions of natural laws (though we are still not discussing technology - only the theoretical limits on what
technology can do). Perhaps this is to be expected, as we explicitly invoked physical considerations,
but it does mean that we’ve left the CS ivory tower somewhat.

As mentioned above, accounting for acceleration does not change the analysis. In that case, the
time dilation is given by

∆t =

∫ √
1−

(v(t)

c

)2
dt (5)

where again ∆t is the time experienced by the traveller moving at v(t). This velocity is measured in
the frame of the (stationary) computer, which experiences time ∆t′ > ∆t. Determining this velocity
can be somewhat involved; in the case of constant proper acceleration a, it is given by

v(t) =
at√

1 +
(
at
c

)2 . (6)

The same result can be seen above - to get an exponential speedup, one must accelerate to exponential
speeds. Proving that this is in fact that case for arbitrary a(t) seems to be a lacuna in the literature.
Nevertheless, it is true, e.g., for simple cases, such as 4 periods of constant acceleration as described
at [8].

In the final analysis, relativistic considerations do not seem to lead to computational speedups of
the sort that interest the theoretical computer scientist. While polynomial speedups may be nice,
we leave it to the engineers to decide if this will ever be the most efficient way to get that limited
speedup. We therefore turn to examining other forms of hypercomputation.

3 Closed Timelike Curves (CTCs)

3.1 Introducing CTCs

Now we can consider a more exotic modification to the laws of physics - time travel. Naively, one might
consider a computer that can send itself arbitrary messages (perhaps limited by memory storage, which
we conveniently ignore in the tradition of theoretical computer science) back in time. On this model,
everything (computable) becomes constant time: the computer takes as much time as is required, and
then sends the result back in time. Perhaps even the halting problem can be solved, it time travel
allows the computer to run for an infinite amount of time while only a finite amount of time elapses
for the user.

However, this model is boring (everything is computable in constant time), and is a little too
generous with what we allow from time travel. For instance: do we require any sort of consistency
condition to avoid grandfather paradoxes? For illustration, at the very least we might require that
after the user gets an answer, they don’t turn off the computer until the computation-time elapses -

4



otherwise the answer to a difficult computation question simply popped into existence without ever
having actually been solved!

We therefore restrict our analysis to more limited time travel, and require some actual model (even
if not physically complete) that addresses these sorts of paradoxes1. In particular, we consider closed
timelike curves (CTCs) in a quantum universe, as proposed by Duetsch [9]. 2 In this model, roughly
speaking, it is required that we model the state of the universe probabilistically, and that state is a
“fixed point” of the evolution operator of the universe. Below, we flesh out the idea in more detail,
but it is useful first to have a qualitative picture. One solves the Grandfather paradox on this theory
by showing that A is born is born with probability 0.5, and that if one is born, one (certainly) goes
back in time to kill A’s grandfather. We therefore have that the grandfather dies with probability 0.5,
and so A is born with probability 0.5. Probabilistic consistency!

Strictly speaking, this may not even require positing a change to the laws of nature, as closed
timelike curves are compatible with the field equations of general relativity. The first such solutions
were found by Godel in 1949 [10], but that solution, known as the Godel metric, has characteristics
that are thought not to hold for our universe (such as no Hubble expansion). As mentioned in the
discussion of relativity, however, physics awaits a model that can accommodate both general relativity
and quantum mechanics, so it is premature to conclude that CTC-computers are a physically realizable
possibility.

Before turning to the quantum case, we introduce the classical Deutschian CTC Turing Machine.
What follows is based on [11]; more discussion, including of other CTC complexity classes, can be
found in [12].

Definition 2. A classical Turing Machine with a Deutschian CTC, or TMCTC, is a non-
deterministic (i.e. probabilistic) Turing machine M whose memory tape is divided into two parts:

• a “causality-respecting” register (tape) RCR, which contains the inputs of M ,

• a “closed timelike curve” register RCTC,

and that has an operation that set the current square to 0 or 1 with equal probability of 1/2.

Both registers contain infinitely many squares and, just as ordinary Turning machine, finitely many
steps in a computation can only access to finitely many squares. Thus, the tape contents of a TMCTC

is a pair of binary strings (x, y), whose lengths are finite, such that x is on RCR and y is placed on
RCTC . In the following, we shall write (x, y) ∈ RCR ×RCTC to indicate that input x is written on
RCR and y is written on RCTC .

In addition, we require that the machine M satisfy the following condition to be a TMCTC:

(i) M must halt at some point and output 0 or 1 for any input pair (x, y) ∈ RCR ×RCTC .

This requires that for any input x to RCR, there will be an infinite dimensional stochastic matrix
Sx : {0, 1}∗ −→ {0, 1}∗ that M induces on RCTC . Let P be a probability distribution on {0, 1}∗. Then,
we define P to be a fixed point of Sx if

Sx(P) = P. (7)

1Different models of time travel are used in various fictional narratives. The Harry Potter and Artemis Fowl se-
ries/universes require a consistency condition - ”if someone goes back in time, it’s as if they’ve already gone back” -
though that’s done in a deterministic universe (or at least, no lack of determinism is specifically stated). The Umbrella
Academy adopts some other model, and it seems as though the timeline actually changes each time time travel occurs.

2It’s not clear whether this model really solves the paradoxes of time travel, without a guarantee that the same
result occurs on each run through the timeline (such a guarantee would go against the spirit of the model). Otherwise,
paradoxes can still occur. Perhaps this issue is solved by a Many Worlds interpretation of quantum mechanics, since on
that picture all possibilities are always (in a timeless sense) present. Deutsch explicitly argues for Many Worlds on this
basis in [9]. In any case, this would still require that in a particular World, different results can happen the “second
time through the timeline”. As I recall reading somewhere, English grammar doesn’t have the resources to handle time
travel.
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In other words, P is a fixed point of Sx - the action of Sx leaves P unchanged. Sx essentially defines
the part of the computation that involves time travel.

We further require that the machine M must satisfy the following conditions to be a TMCTC:

(ii) the stochastic matrix Sx has at least one fixed point P for every input x ∈ {0, 1}∗ (this condition
is required to handle the case where Sx is infinite dimensional; in the finite case a fixed point is
guaranteed),

(iii) for any input (x, y), the operator Sx either accepts on all of its fixed points or rejects on all of
its fixed points.

Figure 1: A graphic representation of CTC machine. The circuit C acts on both RCR and RCTC

registers. The condition (ii) indicates that Nature must find a probability distribution on RCTC that
is a fixed point and then output from RCR.

By accept, we mean that, given an input x and a probability distribution P on {0, 1}∗,

Pry∼P
(
M(x, y) outputs 1

)
≥ 2

3
,

and, by reject, we mean that

Pry∼P
(
M(x, y) outputs 0

)
≥ 2

3
.

Finally, let L ⊆ {0, 1}∗ be some language. The machine M decides L if M accepts any x ∈ L and
rejects any x /∈ L. We denote the class of all languages that can be decided by some TMCTC as
ComputableCTC. This suffices as a model of classical (probabilistic) computation with CTCs.

Before continuing, it may be helpful to give a higher level overview of how such a TMCTC. It
accepts input x on a classical register, and writes an output y on the CTC register such that when
the TMCTC runs, via the probabilistic transitions Sx, (x, y) is a fixed point of the computation. Thus,
in a sense y is both the input and output to the computation - it is the only stable thing that can be
written on RCTC . This raises the question of when/where/by who the actual answer was computed,
but it is difficult to make this into a precise paradox. We therefore chalk it up to the paradoxes of
time travel.

We can also define the quantum analogue, which is a generalization of the classical version.

Definition 3. A quantum Turing machine with Deutschian CTC, or QTMCTC, is a machine
that consists of a sequence of unitary operation on the tensor product of Hilbert spaces RRC ⊗RCTC ,
where RRC and RCTC has the same function as in the classical case.

Both registers are of countably infinite dimensional size whose bases consists of vectors represented
by binary strings |p1, p2, ...〉, where pi ∈ {0, 1}. For a given normalized state |ψ〉 =

∑
x∈{0,1}∗ αx |x〉,
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we can use a quantum Turing machine to act on it, which is a finite control. That is, there is
an internal finite-dimensional Hilbert space such that any unitary transformation contained in this
quantum Turing machine can act on only O(1) contiguous qubits. This corresponds to the standard
limitations places on quantum Turing machines.

Besides tape qubits, the unitary transformation in a quantum Turing machine can also act on the
qubits in the internal Hilbert space as well as the subspace spanned by the states |L〉 , |R〉 , |Acc〉 and
|Rej〉, which are states that corresponding to moving left, right, accepting, or rejecting respectively.

Similarly, given a quantum Turing machine M and an initial state |x〉 on RCR, one can associate
a superoperator Sx, which maps a mixture of states, i.e. a density operator, to another one, induced
on RCTC . Again, a density operator ρ is a fixed point of Sx if Sx(ρ) = ρ. As mentioned above, for a
finite-dimensional case, one can always find a fixed point for each superoperator but this is not true
for infinite-dimensional case. In analogous with the classical machine, a quantum machine M is a
QTMCTC if the following conditions are true:

(i) M always halts and “outputs” either |Acc〉 or |Rej〉 on any input |x〉 ⊗ |y〉 ∈ RRC ⊗RCTC ,

(ii) the superoperator Sx has a fixed point for any x ∈ {0, 1}∗,

(iii) and, for any x ∈ {0, 1}∗, the fixed point ρ of Sx either accepts, i.e.,

Pr(M |x〉 〈x| ⊗ ρ outputs |Acc〉) ≥ 2

3
,

or rejects, i.e.,

Pr(M |x〉 〈x| ⊗ ρ outputs |Rej〉) ≥ 2

3
.

Again, a quantum machine M decides a language L ⊆ {0, 1}∗ if M accepts x ∈ L and reject x /∈ L.
We denote the class of all languages that can be decided by some QTMCTC as QComputableCTC.

We should stress two striking features about the above definition of the CTC Turing machine
before we move onto the extent and limit of its computability power. First of all, it is possible for
the machine M to induce some stochastic operator with fixed points without a finite support, i.e., a
probabilistic distribution over infinitely many strings in {0, 1}∗. Also, even though each fixed point
P = {px}x∈{0,1}∗ might have finite expected string length, i.e.,

∑
x∈{0,1}∗ px|x| <∞, there is no upper

bound that can be determined a priori.
In principle, these problems rise the issue of whether it is reasonable to construct a computer that

can accept or reject (instantaneously!) a string with an enormous length, something like 1010
1010

bits?
In classical computability theory these issues are avoided by taking limits to infinity and the like.
However, with CTCs, because time is not a concern, the few-step computation can use arbitrarily
large space - one can’t argue that only in the limit of long computation times are large tapes required.
Possibly somewhat mitigating this issue is that while CTC Turing machines can solve the halting
problem (as we will see shortly), they always output a finite string, and always halt. To the extent
that issues remain, they are intricately bound up with the weirdness of time travel.

3.2 Tackling Uncomputable Problems with CTCs

In the previous section, we have defined both classical and quantum version of Deutschian CTC
Turing machine. To demonstrate the enhance of compubability power, we will begin by showing that
a Deutschian CTC Turing machine can solve the halting problem, described in section 2.

Proposition 2. HALT ∈ ComputableCTC.

Proof. Let P be some Turing machine with description 〈P 〉 and suppose P runs for at least n steps.
We denote the string that records the first n steps of execution history by P as sn. Then, s0 would
the empty string, indicating the blank tape and P is at its initial state, and sn+1 can be obtained
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recursively by appending sn with the (n+ 1)-th execution step by P . It follows that, given any string
y and knowledge of P , it is easy to determine whether y = sn for some n ≥ 0 and, if it is equal,
which n it is. We will call the string sn the halting history if P halts after the n-th execution and
a non-halting history otherwise.

Now, we define our TMCTC, M , that takes (〈P 〉, y) as input on its RRC ×RCTC , where y is some
string, and does the following:

1. If y is a halting history, then y is unchanged on RCTC and M outputs HALT.

2. If y = sn for some n and is a non-halting history, then write sn+1 onto RCTC with probability
1/2, or write s0 onto RCTC with probability 1/2 and output LOOP.

3. If y 6= sn for any n, then rewrite s0 into RCTC and output LOOP.

Based on these rules, we will have two possible cases. In the case that P halts, then y = sn for
some finite n on RCTC . The induced stochastic matrix Sy, on the input y ∈ RCTC , will have a unique
fixed point at the probability distribution P = δ(x− y), where x ∈ {0, 1}∗ is any string and δ(x− y)
is the Dirac function and thus will output HALT with certainty.

On the other hand, if P runs forever, one can easily check that Sy has geometric distribution P
with Pr(y = sn) = (1/2)n+1 as its unique fixed point. Again, M will output LOOP with certainty.
Therefore, HALT ∈ ComputableCTC.

3.3 Computability Power of TMCTC

In the previous subsection, we have demonstrated that CTC Turing machines are much more powerful
than ordinary Turning machines since they can compute a problem that is not Turing computable.
In this subsection, we will show that, in fact, Deutschian CTCs have the exactly same computability
power as an oracle for the halting problem, i.e.,

ComputableCTC = ComputableHALT,

where ComputableHALT the set of all problems that can be Turing-reducible to the halting problem,
i.e., a language L is Turing-reducible to HALT if, let M be an oracle machine that decides HALT, M
decides L.

We have not yet mentioned computational oracles, but an intuitive explanation will suffice: an
oracle is a black-box that (usually in one time-step) provides the solution to a class of problems. Thus,
an oracle for HALT provides a solution to the halting problem when queried (with appropriate input).

Before we proceed, we shall mention an important fact. Similar to the case for ordinary classical
and quantum Turing machines, for CTCs, we have

ComputableCTC = QComputableCTC.

Thus, the above result can be extended to

ComputableCTC = QComputableCTC = ComputableHALT.

First, we shall consider the inclusion on the left.

Theorem 1. ComputableHALT ⊆ ComputableCTC.

Proof. Let P be an oracle Turing machine that repeatedly queries a HALT oracle. We need to
determine whether P accepts or rejects, provided one of these is the case. Let τ1 < τ2 < ... be the
time step on which P queries the HALT oracle. Without loss of generality, we assume that interval
between each consecutive step is sufficiently large so that P can always delay a query or insert an
additional query when needed.
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Let {Bi} be a sequence of ordinary (non-oracle) Turing machines and si,ni
be the history of the

first ni steps of the machine Bi, defined as in the proof of proposition 2. The sequence is ordered
such that Bi is the i-th Turing machine that P submits to its HALT oracle to check whether it halts.
Then, consider

s = 〈s1,n1
, ..., sk,nk

〉

the k-tuple of execution histories. For i = 1, 2, ..., k, we define qi = 1 if si,ni
is a halting history and

qi = 0 otherwise. s is valid if:

• Each si,ni
is a valid execution history (not necessarily a halting history),

• If we run P , treating i-th oracle query as returning qi, then B1, ..., Bk are the first k Turing
machine that P submits to the HALT oracle at times τ1, ..., τk.

Then, we call s halting if P will halt by the time step τk+1. In this case, we call s accepting if
P accepts and rejecting if P rejects. Otherwise s is called non-halting. In the case where s is
non-halting, we let Bk+1 be the Turing machine that P asks at the time step τk+1.

Let δ be the k-tuple when k = 0, which is the string P encodes in its initial state, and let SB be
the stochastic matrix that maps RCTC to itself assuming that RCTC is initialized to 〈B〉. We can
now define M (a TMCTC):

1. If s is not valid, then set s = δ.

2. If s = 〈s1,n1 , ..., sk,nk
〉 is valid and halting, then set s = 〈SB1(s1,n1), ..., SBk

(sk,nk
)〉 and accept

if s is accepting and reject otherwise.

3. If s = 〈s1,n1
, ..., sk,nk

〉 is valid and non-halting, then set s = 〈SB1
(s1,n1

), ..., SBk
(sk,nk

), sk+1,0〉

Now, for a valid execution, P makes exactly k queries to its HALT oracle, about B1, ..., Bk re-
spectively. Let P1, ...,Pk be the fixed points of SB1 , ..., SBk

respectively, and let S be the stochastic
mapping that M(〈P 〉, s) induces on s acts on its RCTC. Then, it suffices to show that 〈P1, ...,Pk〉
is the unique fixed point of S since, if s is sampled from 〈P1, ...,Pk〉, then M(〈P 〉, s) accepts with
certainty if oracle accepts and rejects with certainty if oracle rejects.

It is clear that 〈P1, ...,Pk〉 is a fixed point. For uniqueness, we consider the following facts. First,
any fixed point must have support only on valid k-tuples. Second, if P = 〈P1, ...,Pk〉 is a fixed point,
then P marginalized to its first coordinate must be a unique point of SB1 . Then, by induction, P is
the unique fixed point. Therefore, ComputableHALT ⊆ ComputableCTC.

To show the converse inclusion, we will borrow one of the most important theorem from functional
analysis, the Rietz representation theorem.

Theorem 2 (Rietz representation theorem). Let H be some Hilbert space, possibly infinite di-
mensional, and let F : H −→ C be a linear functional. Then, there exists a unique u ∈ H such that
F (v) = 〈u, v〉 for any v ∈ H.

Also, we need the following definition. For any mixture of states ρ, which are some N ×N matrix
(assuming that the Hilbert space is finite dimensional), we define the vectorization of ρ be the N2

vector whose entries are the same as ρ (write components of ρ into a single column); we will denote
it by vec(ρ).

Then, we have the following lemmas.

Lemma 1. Let H be a Hilbert space and F : H −→ C be a linear functional. For fixed ε > 0 and
integer T ≥ 1, let u ∈ H be a unit vector such that ‖F tu− u‖ ≤ ε. Then there exists a vector w ∈ H
such that ‖u− w‖ ≤ ε and w is a fixed point of F , i.e., F (w) = w.

9



Lemma 2. For any mixtures of states σ, ρ,

‖vec(σ)− vec(ρ)‖ ≤ ‖σ − ρ‖tr = tr |σ − ρ|. (8)

Furthermore, if σ is a mixture of states on {0, 1}≤k and ρ is a mixture of states on {0, 1}∗, then

‖σ − ρ‖tr ≤ 2k/4+2
√
‖vec(σ)− vec(ρ)‖. (9)

The proofs are unimportant for our discussion; we shall refer readers to [11]. Now, we will finish
the discussion by proving the converse inclusion.

Theorem 3. ComputableHALT ⊇ ComputableCTC = QComputableCTC.

Proof. Given a language L ∈ QComputableCTC and an input x ∈ {0, 1}∗, we have a superoperator
Sx on the space {0, 1}∗ and Sx has at least one fixed point. There is also a quantum CTC Turing
machine M such that either

Pr(M(ρ) accepts) ≥ 2

3
for all fixed points ρ of Sx

or

Pr(M(ρ) rejects) ≥ 2

3
for all fixed points ρ of Sx.

The problem is then to decide which of the above inequalities is true.
LetMk be the set of mixtures of states on {0, 1}≤k that has rational entries only. Then, we define

M =
⋃

k≥1Mk. Clearly, M is countably infinite and is dense in the set of all mixtures of states on
{0, 1}∗ since we can always a mixtures of states on {0, 1}∗ arbitrarily well with elements in M.

We will define an oracle Turing machine P with a HALT oracle that distinguish the above two
cases, taking the descriptions of Sx and M as input. The machine P will do the following: For all
k ≥ 1 and all mixtures of states ρ ∈Mk, for each of the above cases

1. Use HALT oracle to check whether exists some t ≥ 0 such that

‖ρ− St

x(ρ)‖tr >
1

2k+12
.

2. If no such t exist, then

• HALT and accept if Pr(M(ρ) accepts) ≥ 0.55.

• HALT and reject if Pr(M(ρ) rejects) ≥ 0.55.

Now, we shall show that P always halt. By the assumption, Sx has a fixed point ρ. Then, for a
k ≥ 0 sufficiently large, we can find σ ∈Mk such that

‖ρ− σ‖tr ≤
1

2k+12
.

This implies, for all t ≥ 0,

‖St

x(σ)− ρ‖tr = ‖St

x(σ)− St

x(ρ)‖tr ≤ ‖σ − ρ‖tr ≤
1

2k+12
.

Thus, by lemma 2, we have

‖vec(S
t

x(σ))− vec(ρ)‖ ≤ 1

2k+12
.

Thus, P will halt when it reaches σ.
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Finally, we will finish the proof by showing that P always yields the correct result. Since P halts,
then there exists some mixture of states σ ∈Mk for some k such that

‖St

x(σ)− σ‖tr ≤
1

2k+12

for all t ≥ 0. By lemma 2, this implies that

‖vec(Sx(σ))− vec(σ)‖ ≤ 1

2k+12
.

Then, by lemma 1, there exists some fixed point ρ of Sx such that

‖vec(ρ)− vec(σ)‖ ≤ 1

2k+12
.

Again, by lemma 2, this implies that

‖σ − ρ‖tr ≤ 2k/4+2

√
1

2k+12
≤ 1

16
.

Thus, if Pr(M(ρ) accepts) ≥ 2
3 , then we have

Pr(M(ρ) accepts) ≥ 2

3
− 1

16

and this is also true for the case Pr(M(ρ) rejects). Since this shows that either all fixed points satisfy
the former case or all fixed points satisfy the later case, then P correctly decides whether x ∈ L.

Therefore, QComputableCTC ⊆ ComputableHALT.

We have reached our goal of discussion, finding that the extent and the limit of computability
power of Deutschian CTCs. That is, ComputableCTC = ComputableHALT. Thus, CTCs allow one to
define a model of computation that gives a possible construction of an oracle for HALT. Also, just as
a final remark, the above result can also be expressed as

ComputableCTC = QComputableCTC = ComputableHALT = PSPACE.

For detailed discussion for this result, we refer readers to [12].

4 Conclusion

We’ve covered several models of computation, up to the extreme of potentially physically realizable
(in the sense of not violating a known law of nature) machines that can solve the halting problem.
There are other ways to extend models of computation. One example is supertasks (see, e.g. [13]),
in which a computer each successive operation takes less time (e.g. by factor of 1/2). Another model
applies the notion of fuzzy logic to Turing machines, such as in [14]. Hopefully this paper provided
an interesting introduction to hypercomputation, and the reader is inclined to add time-travel-based
computers to the collection of fascinating models of computation. Who knows - maybe in 100 years,
after the quantum computing skeptics are silenced, there will be CTC-computing skeptics, steadily
back-peddling as CTC technology advances.

11



References

[1] Richard Feynman. “Simulating Physics with Computers”. International Journal of Theoretical
Physics vol. 21, (1982), pp. 467–488.

[2] A. Chi-Chih Yao. “Quantum circuit complexity”. Proceedings of 1993 IEEE 34th Annual Foun-
dations of Computer Science. 1993, pp. 352–361. doi: 10.1109/SFCS.1993.366852.

[3] Edward Fredkin and Tommaso Toffoli. “Conservative Logic”. International Journal of Theoret-
ical Physics vol. 21, (1982), pp. 219–253.
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[10] Kurt Gödel. “An Example of a New Type of Cosmological Solutions of Einstein’s Field Equations
of Gravitation”. Rev. Mod. Phys. vol. 21, (3), pp. 447–450.

[11] Scott Aaronson, Mohammad Bavarian, and Giulio Gueltrini. Computability Theory of Closed
Timelike Curves. 2016. arXiv: 1609.05507 [quant-ph].

[12] Scott Aaronson and John Watrous. “Closed timelike curves make quantum and classical com-
puting equivalent”. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences vol. 465, no. 2102 (2008), pp. 631–647. issn: 1471-2946.

[13] Oron Shagrir. “Super-tasks, accelerating Turing machines and uncomputability”. Theoretical
Computer Science vol. 317, no. 1 (2004), pp. 105 –114.
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