
Exponential Advantages in Quantum Machine Learning through

Feature Mapping

Andrew Nader, Kyle Oppenheimer, and Gary Tom

December 4, 2020

Contents

1 Introduction 2

2 Quantum Recommendation Algorithm 2

3 Dequantization Result 4

3.1 Quantum-inspired Classical Recommendation Algorithm . 4

4 Feature Mapping 5

4.1 Supervised Machine Learning in Quantum Feature Spaces . 6

4.1.1 Quantum Kernel Estimation . 6

4.2 First Provable Exponential QML Advantage . 7

4.2.1 DLP . 8

4.2.2 Quantum Feature Map . 8

4.3 Power of Data in Quantum Machine Learning . 9

4.3.1 How Data Changes Complexity Theoretic Considerations . 9

4.3.2 Geometric Kernel Distances and the Projected Quantum Kernel 10

5 Conclusion 14

6 Appendix 15

6.1 Rigorous Separation between BPP, BQP, and Classical Algorithms that Learn from Data 15

7 References 16

1

1 Introduction

Machine learning (ML) has opened the door to many problems we could not previously solve by
getting computers to figure out solutions without being explicitly told what to do. Similarly,
quantum computers allow us to find solutions to problems that might otherwise be infeasible for
classical computers by harnessing the computing power of quantum entanglement and superposition.
At the intersection of these fields is quantum machine learning (QML), which makes use of these
quantum effects to enhance the field of machine learning and break through classical computational
barriers. Many QML algorithms have been proposed that can offer some computational speed-up,
however, it is still an open question to determine when we can expect to achieve speed-ups, and in
what circumstances exponential speed-ups are possible.

In this report, we take a chronological look at some impactful papers in this area to give a
sense of the trajectory of the research and where that might propel us in the future. In Section 2
we describe a quantum recommendation algorithm from 2016 [1], which, along with several other
QML algorithms from around the same time, were initially believed to achieve exponential speed-
ups. However, these papers were not being particularly rigorous about the input and output to the
algorithms and as such it was unclear how exactly to compare them to their classical counterparts. In
Section 3, we describe Tang’s dequantization results [2], where it was shown that if we make similar
assumptions about access to the input in the classical regime, then there are classical algorithms
which can match the QML results up to polynomial, not exponential, slowdown. These results
brought into question whether the quantum algorithms themselves contributed to the speed-up, or
if it was due to assumptions of the quantum data and other small details involved in the end-to-end
process.

A natural challenge is then to find quantum machine learning algorithms which can be proven
to be exponentially faster than their classical counterparts, irrespective of the dataset to be learned.
The most obvious way of doing that would be to use quantum computing to obtain exponential
speedups in the training process of an existing classical algorithm (such as inference in probabilistic
graphical models), but the research community has not succeeded in doing this yet. However, there
have been considerable advancements in using quantum models to try to generate correlations that
are hard to compute classically. For example, one way of doing this is to use quantum feature maps
that are classically intractable to embed data into a high dimensional Hilbert space where it can be
linearly separated by a support vector machine. If these correlations turn out to be useful for some
learning problem, then that would provide a considerable advantage over classical ML. In Section
4, we survey a QML algorithm that leverages these quantum feature maps to obtain a rigorous
quantum exponential speed-up for a learning problem, given only classical access to the data [3].
We continue to discuss the results of Huang et al. [4], which outlines when a quantum advantage
might be possible. Research in this field will likely be focused on finding other results of the same
kind, as well as expanding on these results to be of more practical relevance.

2 Quantum Recommendation Algorithm

The algorithm at the center of the hype that took hold of quantum machine learning from 2008
onwards is the HHL algorithm [5], named for its creators, Aram Harrow, Avinatan Hassidim, and
Seth Lloyd. The intuition that led to the creation of the algorithm is simple: from a mathematical
standpoint, most of machine learning is just a big pile of linear algebraic routines in extremely high

2

dimensional vector spaces, and quantum mechanics excels at dealing with these high dimensional
vector spaces. So it should stand to reason that quantum computing provides substantial speed-ups
for linear algebraic subroutines in this setting. The HHL algorithm provides a provably exponential
speed-up for matrix inversion, albeit with many caveats which are discussed by Aaronson [6]. The
HHL algorithm led to a slew of discoveries in quantum based linear algebraic subroutines, the most
important of which is the quantum recommendation algorithm (QRA) [1].

The QRA was extremely important because it solved a practical problem, appeared to provide
an exponential speed-up over classical algorithms, and did not share some of the problems that the
HHL algorithm had. For example, the HHL matrix inversion procedure for Ax = b does not return
the classical state x, but the quantum state |x〉. In that sense, HHL solves a different problem,
giving exponential speed-up for quantum inputs and outputs, whereas the QRA solves the same
problem as the classical one.

The classical recommendation system problem is well studied in the literature since it is both
theoretically interesting and of practical importance for companies like Netflix and Amazon. The
goal is to recommend new products to a user that they are likely to enjoy, given their past likes
and dislikes. The main data structure of interest is an m × n preference matrix P , where m is
the number of users, n is the number of products, and the matrix entry Pij represents some kind
of utility value that user i has for product j. An example of such a preference matrix for Netflix
movies and TV shows is shown in Table 1. Many utility values are missing from the preference
matrix and are denoted by “?”. This is the case we often encounter in the real world, as we only
have the matrix entry Pij if user i has provided a review for product j. If David logs in and is
looking for a movie, then it would make sense to recommend Inception, since it appears that Wayne
and David have similar tastes and Wayne liked Inception. A simple (in principle, at least) solution
then emerges: in order to give recommendations to a user, we would use the available data from
”similar” users to reconstruct the utility value for a particular user (i.e, their corresponding row in
the preference matrix), and we would then return a high value element from this row.

Inception Kim’s Convenience The Avengers Friends

Wayne 0.8 0.8 0.9 ?

Robert 0.95 0.2 0.1 ?

Cristiano 0.3 ? ? ?

Lionel ? ? 0.9 0.4

David ? 0.9 0.9 ?

Table 1: Example of a Netflix preference matrix.

In real world applications and for companies like Amazon and Netflix, the preference matrix is
huge, with millions of users and entries, so the recommendation problem becomes challenging. The
matrix reconstruction cannot be done in general, but it can be done if we make the assumption
that our preference matrix has a low rank approximation. There is empirical evidence that this
assumption holds true, and in general consumers fall into a small number of categories based on
preferences. Armed with this low rank assumption, classical algorithms can solve the recommenda-
tion problem in time polynomial in the matrix dimensions. However, to make a recommendation,
we do not need to reconstruct the entire row for a user; we only need to be able to sample a high
value element from that row. This is exactly what the QRA does in time poly-logarithmic in the
matrix dimensions!

Let us make this more precise. First, a new matrix T is defined by replacing the unknown values

3

in P by 0. Then a uniform sub-sample T̂ of T is defined, where T̂ij =
Tij
p with probability p and

0 otherwise. An analysis shows that being able to sample from T̂k for small k is enough, where T̂k
is a rank k approximation to T̂ . Note that the row (T̂k)i for user i from which we need to sample
is closely related to the singular value decomposition, since (T̂k)i is the projection of T̂i onto the
top-k singular row singular vectors of T̂ . This implies a possible way to get the sample we need:
compute the projection in time poly-logarithmic in the matrix dimensions, and then measure it in
the computational basis. The QRA does this,1 but on a matrix that is “close” to T̂k. Still, this is
sufficient for generating good recommendations.

There is a final detail, however; quantum algorithms operate on quantum data, not classical
data, but our preference matrix is assumed to be classical. So there has to be some way of encoding
the classical data into a quantum state without sacrificing the exponential speed-ups. Kerenidis
and Prakash resolved this by defining a binary tree data structure for m× n matrix A that is able
to encode the classical rows Ai into quantum states |Ai〉 in time poly(logmn). This is called the
state preparation procedure. It seems now that we have a QRA that offers an exponential speed-up
over known classical algorithms, but the two necessary assumptions for the QRA, the low rank
approximation assumption, and the assumption of an efficient state preparation procedure, will
prove to be detrimental to the quantum advantage provided by the algorithm.

3 Dequantization Result

At the time of publication, the Kerenidis and Prakash quantum recommendation algorithm was
one of the more promising candidates of QML algorithms that promised exponential speed-up over
classical algorithms. Unlike other QML algorithms, such as principal component analysis (PCA) [7],
and supervised clustering [8], QRA was able to achieve exponential speed-up without necessitating
sparse or well-conditioned data, making it more applicable and comparable to the classical problem.

However, in 2019, Tang published a classical algorithm for recommendation systems that per-
formed only polynomially slower than QRA, demonstrating that Kerenidis and Prakash’s algorithm
does not give an exponential speed-up over classical recommendation algorithms [2]. More impor-
tantly, Tang’s work provides a framework for dequantizing QML algorithms. Since then, a number
of quantum-inspired classical algorithms have been developed for various machine learning tasks
[9, 10, 11]. Here we will briefly summarize the dequantization result by Tang.

3.1 Quantum-inspired Classical Recommendation Algorithm

Like many QML algorithms, QRA relies on the quantum state preparation assumptions: when given
some input vector v, one can prepare a corresponding quantum state |v〉. Tang’s key insight is that
the quantum state preparation assumption requires a data structure that permits l2-norm sampling
of the data. With l2-norm sampling, a classical algorithm can efficiently pinpoint portions of input
vectors and matrices with the most weight, something that is implicitly encoded in the prepared
quantum states for QML.

We define a vector x ∈ Cn to have query and sampling access if we can query xi for any
given i ∈ [n]; and we can independently sample i ∈ [n] from a probability distribution defined as
Dx(i) = x2

i /‖x‖2. Here ‖x‖ is a normalization factor, and is assumed to be known for both classical

1Well, actually, it computes the projection of the vector onto the space spanned by the row singular vectors with
singular value greater than some threshold, but that’s good enough.

4

and quantum algorithms. This sampling technique is the classical analogue of the quantum state
prepared for QRA. The distributionDx(i) is the same as making an ith measurement on the quantum
state |x〉. Similarly, we can define a matrix to have query and sampling access if the row vectors
have query and sampling access.

From here we can produce three dequantized results which will contribute to the final classical
algorithm. Firstly, we can efficiently estimate the inner product between two vectors x, y ∈ Cn,
where we have sampling and query access to x, and just query access to y. We can estimate 〈x, y〉
up to an error of ‖x‖‖y‖ε with at least 1−δ probability, with a runtime of O(poly(1

ε2
log 1

δ)). This is
an application of a median-of-means estimate. Computationally, the estimate would be the median
of 6 log 1

δ copies of the mean of 9
2ε2

copies of the random variable yi/xi, where xi has i ∼ Dx(i).

Secondly, consider a matrix V ∈ Cn×k where we have sampling and query access, and the
spectral norms ‖V ‖. For vector w ∈ Ck as input, we can output a sample of V w (ie. the rows) with
O(poly(k)) queries. This result relies on rejection sampling to generate the target DV w samples
from another distribution DV (j) , for which we have sampling access.

Finally, with query and sampling access, we can efficiently generate a low-rank approximation
using a classical algorithm, which is modified from an algorithm by Frieze, Kannan, and Vempala
(FKV) [12]. For a matrix P ∈ Cm×n with query and sampling access, we can create an approximate
matrix T with rank(T) ≤ k, for some threshold k; provided that the low-rank assumption is true
for sparse and high-rank P , something already assumed for QRA. Specifically, the matrix T takes
the form of

T = P (S†UΣ−1)(S†UΣ−1)†, (3.1)

where S ∈ Cl×n is a subset of rows in P , and U , Σ are from the singular value decomposition
P = UΣV T . The matrix T is “close” to the original matrix P up to an error factor of ε. The
Modified FKV algorithm runs in O(poly(k, 1

ε)).

In the context of recommendation systems, we can now build the quantum-inspired classical
algorithm based on the above dequantized results. Consider a preference matrix P ∈ Rm×n, where
we have m users and n products, similar to Table 1. To generate good recommendations, first we
apply the Modified FKV algorithm to obtain a low-rank approximation of T . Since we have sampling
and query access to the preference matrix, we can sample from each row of the approximation

Ti = PiS
TMS, (3.2)

where Pi is a row in the preference matrix, S is a subset of rows from the preference matrix, and
M = UΣ−1(Σ−1)TUT , with U , Σ as defined before.

With this form, we can now approximate the inner product PiS
T with the procedure described

above, and matrix multiply it with M . Finally, we have PiS
TUUTS which we can sample for

new recommendations using equation (3.2). With this result we can get recommendations in
O(poly(k) log(mn)) time, where the additional O(log(mn)) comes in overhead from the imple-
mentation of the required data structure. This classical algorithm is not only polynomially slower
than QRA, but is exponentially faster than the previous best classical recommendation algorithms.

4 Feature Mapping

Tang’s dequantization result demonstrates that when given similar sampling access to quantum
data, classical algorithms can perform many machine learning tasks in runtimes similar to quantum

5

algorithms. While there exists QML algorithms that require only classical access to data, until
recently, it was not clear if these algorithms could achieve exponential speed-ups over their classical
counterparts.

Recent work exploring supervised machine learning using quantum feature mapping has demon-
strated a provable exponential speed-up for a particular learning problem, through the generation of
correlations that are hard to compute classically. In particular, support vector machines are shown
to efficiently classify classical data mapped onto a quantum feature space for the discrete logarithm
problem. The use of these quantum enhanced feature spaces was first proposed and experimentally
implemented by Havĺıček et al. [13], as described in Section 4.1. In 2020, Liu et al. [3] further devel-
oped the method to achieve this exponential quantum speed-up for the discrete logarithm problem,
as described in Section 4.2.

4.1 Supervised Machine Learning in Quantum Feature Spaces

Consider the following supervised machine learning task. A dataset with labels is split into a
training set T and a test set S. An ML algorithm attempts to predict the labels of S by studying
and learning from the data in T . More formally, the labels for the data points provide a map
m : T ∪S → {+1,−1}. The classifier algorithm is only provided with the labels of ~x ∈ T , and must
learn an approximate map m̃(s) ≈ m(s) for a test set data point ~s ∈ S.

A common supervised machine learning model for such a task is the support vector machine
(SVM). In SVM, the goal is to draw a separating hyperplane boundary between the two classes
{+1,−1} in feature space that maximizes the margin between the boundary and any nearby data
points, the so-called support vector. This is often done using the kernel method, in which inner
products between feature vectors are performed using a non-linear kernel function. Calculations
using kernel functions are not only computationally cheaper, but they generalize the calculation
to higher dimensional feature spaces. However, as the feature space becomes larger, the kernel
functions become expensive to calculate. Quantum computers can estimate quantum kernels that
might be infeasible to estimate classically via a procedure called quantum kernel estimation (QKE).

4.1.1 Quantum Kernel Estimation

Figure 1: The circuit used in [13] for encoding classical data onto a quantum state. This circuit
was used to map artificial data that was classified using a quantum computer. The experimental
implementation equation (4.1) for two qubits is shown as well.

6

The first step to the method described by Havĺıček et al. [13] is to map the classical data onto
a quantum state. It is important that such a mapping is not too simple; for example, a feature
map that only gives product states can easily be classified classically. The feature map used was
UΦ(~x) = UΦ(~x)H

⊗nUΦ(~x)H
⊗n, where H is the Hadamard gate and

UΦ(~x) = exp

i ∑
S⊂[n]

φS(~x)
∏
i∈S

Zi

 , (4.1)

where the coefficients φS(~x) are used to encode the data, and Zi is the Pauli Z measurement on
the ith qubit. This circuit is shown in Figure 1, and will be applied onto an initial |0〉⊗n state. In
general, UΦ(~x) can be any diagonal and unitary gate; this particular form was chosen for experimental
convenience.

With the data mapped onto a quantum state, we now want to use SVM to create a classifier
for data in T = {~x1, · · · , ~xt}, with corresponding labels yi = m(~xi) ∈ {+1,−1}. The maximization
of the margin can be formulated as Lagrangian multipliers using a kernel function, the solution
of which will give the parameters ~α = (α1, · · · , αt) and b the bias for a separating hyperplane
boundary.

For any data point in the test set s ∈ S, the approximate classifying map is

m̃(~s) = sign

 t∑
i=1

yiα
∗
iK(~xi, ~s) + b

 , (4.2)

where K(~xi, ~s) is the kernel matrix that we can estimate through QKE. Since we are working with
states in the quantum feature space, the inner product between feature vectors can be estimated
from the transition probability between quantum state

K(~x,~s) = ‖ 〈Φ(~x)|Φ(~s)〉 ‖2 = ‖ 〈0|⊗n U†Φ(~x)UΦ(~s) |0〉⊗n ‖2. (4.3)

Computationally, QKE works by running the quantum circuit U†Φ(~x)UΦ(~s) on the initial state. We

can then measure the output probability of 〈0|⊗n with R = O(ε−2t4) shots of measurements. The
resulting estimate K̃ will be close to the exact kernel matrix ‖K−K̃‖ ≤ ε. The QKE procedure will
be done twice: once during training on T and again for validation on S. Finally, we can implement
the classifier as specified in equation (4.2).

4.2 First Provable Exponential QML Advantage

In this section we describe a recently proposed quantum algorithm that achieves an exponential
speed-up over any classical algorithm, under the widely-held assumption of the hardness of the
discrete logarithm problem (DLP) [3]. This method avoids any objections about its advantage
arising from quantum state preparation assumptions by taking only classical input data. It then
maps the data non-linearly to a high dimensional Hilbert space where it is linearly separable and
can be classified by a hard-margin support vector machine (SVM). The exponential speed-up is
achieved by estimating the SVM kernel matrix using a QKE program on a fault-tolerant quantum
computer. This is, in fact, the only quantum sub-task in the process, as once the kernel matrix is
calculated the resulting SVM program is entirely classical. We now describe the algorithm in detail.

7

Figure 2: The data looks linearly separable to a quantum computer after it has taken a discrete log
(a), while looking completely random to any classical algorithm (b). Inspired by this insight, we
can use a quantum feature map that maps x ∈ Z∗p to a quantum state |φ(x)〉 to yield data that is
linearly separable with a large margin (c). This can be seen by observing that the -1 labeled blue
interval has no overlap with the green separating hyperplane, while the +1 red interval does.

4.2.1 DLP

The discrete logarithm problem as defined in [3] is

Definition 1 Given a large prime number p and a generator g of Z∗p = {1, 2, . . . , p−1}, find logg x
on input x ∈ Z∗p, in time polynomial in n = dlog2(p)e, the number of bits needed to represent p.

This problem is believed to be infeasible for any classical algorithm, while it has been proven
that Shor’s quantum algorithm can solve it. The input data for the QML algorithm of Liu et al. [3]
is based on a variation of DLP that has been proven to be just as hard as DLP, wherein the labels
are created by first fixing some choice of s ∈ Z∗p (which is not known to the algorithm) as well as
fixing values for g and p (each choice leading to a different data set), and then choosing the label
fs(x) of the data point x from

fs(x) =

{
+1, if logg x ∈ [s, s+ p−3

2],

−1, else.
(4.4)

These labels look random to any classical algorithm, and the authors prove that you could
not achieve an accuracy that is inverse-polynomially better than simply guessing randomly with a
classical approach, as shown in Figure 2. A quantum computer, on the other hand, can calculate
logg x and then find the boundary that linearly separates the classes by learning s, which is an easy
machine learning task for a support vector machine. This is the insight that allows for a quantum
exponential advantage, albeit for a somewhat contrived example that does not hold much practical
relevance.

4.2.2 Quantum Feature Map

We are now ready to describe the quantum feature map that harnesses the power of the DLP
classical-quantum separation to achieve an exponential speed-up. The authors prove that SVM-

8

QKE can classify the data of (4.4) with high accuracy by using the following predefined feature
map

x 7→ |φ(x)〉 =
1√
2k

2k−1∑
i=0

|x · gi〉 . (4.5)

It has been proven that these quantum states can be efficiently constructed on a fault-tolerant
quantum computer by use of Shor’s algorithm. The author’s show that this feature map results
in a linearly separable feature space with a large margin, meaning that an SVM hyperplane could
correctly classify every data point. However, QKE outputs a noisy kernel with variance defined by
finite sampling statistics of the R measurement shots. We need to ensure that this error does not
degrade the accuracy of the SVM to the point of it being unusable. The authors prove that because
of the large margin property, we can achieve a test accuracy of atleast 0.99 using this method with
probability 2/3, using results from soft-margin classifiers and robustness of the bounding hyperplane
under additive noise.

This result is an encouraging rebound from the excitement of the exponential QML algorithms
that were dulled down by Tang. Researchers now continue to search for similar methods with prac-
tical motivation, and perhaps applications that would be feasible for near-term quantum computers.

4.3 Power of Data in Quantum Machine Learning

In this last section, we discuss a recent paper on the “Power of Data in Quantum Machine Learn-
ing” [4], which presents promising results for QML. Supervised learning deals with the problem of
approximating some function f if we are given a dataset of the form {(xi, f(xi))}ni=1. A naive ap-
proach to obtaining quantum advantages is to simply look at functions f that are hard to compute
classically. If classical algorithms have trouble computing f , and our machine learning algorithm is
a classical algorithm, would it not also have trouble dealing with f? The answer is surprisingly no.
The presence of data changes everything.

4.3.1 How Data Changes Complexity Theoretic Considerations

Let us look at a trivial example that the authors Huang et al. [4] used to provide intuition. Consider
some arbitrary d dimensional data {xi}ni=1 , and use it to define a function that is hard to compute
classically. First, we will encode each d dimensional vector xi into quantum state vectors. There are
many ways to do this, such as using amplitude encoding, where we encode xi into the amplitudes
of a quantum state |xi〉.

After we have encoded all of our data points, we define a unitary circuit UQNN that corresponds
to a time evolution under a many-body Hamiltonian. This UQNN , along with our encoded data
vectors, can be used to define a function f that is, in general, hard to compute classically. We define
f by feeding each encoded data vector |xi〉 to UQNN and then measuring an observable O to obtain
f(xi) = 〈xi|U †QNNOUQNN |xi〉. As mentioned previously, this f is, in general, difficult to compute
classically. But is it difficult to learn if we are given a dataset {(xi, f(xi))}ni=1? The answer is no.
First, let us expand the expectation value given by f(xi), keeping in mind that we are using an

9

amplitude encoding,

〈xi|U †QNNOUQNN |xi〉 =

 d∑
k=1

xk∗i 〈k|

U †QNNOUQNN

 d∑
l=1

xli |l〉

=

n∑
k=1

n∑
l=1

xk∗i x
l
iBkl,

(4.6)

where Bkl is defined to be 〈k|U †QNNOUQNN |l〉. This is a function that is quadratic in the xk∗i and

xli, and thus, it is easy to fit if we have enough training data. While f itself may be difficult to
compute, the presence of data allows us to transform the problem to a simple learning problem.
The rigorous separation between the complexity classes of QML and classical machine learning
algorithms with data is described in the Appendix.

So the blows just keep coming and coming for quantum machine learning. First, the hype around
quantum linear algebra subroutines died down with Tang’s dequantization results. Then, we hoped
that methods like the quantum kernel methods could obtain quantum advantages because they
leverage circuits that are difficult to deal with classically, but we still had to see if these circuits are
actually useful in practice and on real world datasets. And now, we have shown that an additional
complication arises because the presence of data can elevate a classical model to the level of a
quantum model! However, this paper still discusses positive results, both theoretical and empirical,
that show that QML can provide substantial advantages over classical machine learning.

4.3.2 Geometric Kernel Distances and the Projected Quantum Kernel

We saw in the previous section that one has to be careful when making claims of speed-ups in
quantum machine learning, because the presence of data can easily put classical algorithms on
equal footing with their quantum counterparts. So how do we check if our QML algorithm is
actually giving us an advantage? Well, we can always rely on good old empirical evidence. We
simply run our quantum algorithm on some tough to classify dataset, and compare it against a
suite of properly optimized state of the art machine learning algorithms. This is the “deep learning
research” way of doing things. Sure, the early work in neural nets had a lot of motivation, such
as the flexibility and biological plausibility of distributed representations over the inherently local
representations of symbolic learning algorithms, but the algorithms themselves did not have any
deep mathematical theory guaranteeing properties like robustness or the ability of gradient descent
to find minima that generalizes well in the optimization landscape. Deep learning only came to
the forefront of Machine Learning when a team led by University of Toronto students and faculty
obliterated the rest of the teams in the 2012 ImageNet competition by using a convolutional neural
network. Empirical results and specific motivations are what brought fame to deep learning.

We could put all of our eggs in that basket, and rely on heuristics and empirical evidence to
check if our algorithm is doing well. Admittedly, this is not very satisfying, for two reasons. First,
there is the annoying feeling that we do not understand why our algorithm is performs well, and
second, a lack of rigorous theoretical structure prevents us from reasoning a priori about a new
algorithm. It would be nice if we had some sort of formula or test that could determine if an
algorithm is a efficient without ever running it on actual computers. The second major contribution
of Huang et al. [4] is exactly that, defining a flowchart can be used to test for potential quantum
advantages.

10

More precisely, this paper focuses on kernel methods. We have already seen that kernel methods
are well motivated in machine learning because of their rich theory and competitive empirical
performance. The setting is as follows: given some classically difficult quantum model, we want to
study the ability of classical and quantum machine learning algorithms to fit the data. As before,
our quantum model is defined by

f(x) = 〈x|U †QNNOUQNN |x〉 = Tr[OUρ(x)], (4.7)

where OU = U †QNNOUQNN . However, we are not restricted to amplitude encoding; any quantum
encoding is possible. The flowchart proposed is shown here:

Let’s define these variables and motivate them, alluding to a few theorems proved in the paper
along the way. The first undefined variable, starting from the root, is gCQ. However, the motivation
for this variable is contingent on first understanding sK , which appears at the second level of the
flowchart in the form of the variables sC and sQ, so let’s talk about that first. The main equation
involving sK is

Ex|h(x)− Tr[OUρ(x)| ≤ c
√
sK
N
, (4.8)

for c > 0, where sK =
∑n

i=1

∑n
j=1K

−1
i,j Tr[OUρ(xi)]Tr[OUρ(xj)]. Here, Ki,j = k(xi, xj), where k is

the kernel function, and h is the function defined by our trained kernel algorithm.

Equation (4.8) is extremely important for understanding the intuition behind the results in this
paper. Fundamentally, it means that our expected prediction error is bounded by two things: N ,
which is the size of our dataset (once again emphasizing the importance of data), and sK . This
sK is a measure of model complexity. A more intuitive way to understand sK is as follows: a
trained kernel model h can always be written as h(x) = w†φ(x), where φ(x) is the associated
feature function. Then sK = ||w||2. If sQ is the model complexity of a particular quantum model,
and sC is the model complexity of the best classical kernel algorithm, then the potential advantage
from our quantum algorithm depends on the separation between sQ and sC . For small separation,

11

there is no advantage in using a quantum algorithm. This is what the “Complexity test for specific
function/label” part of the flowchart is describing. If sC is proportional to N and sQ is much
smaller, then a potential quantum advantage exists. If sC is much smaller than N , we do not need
to consider using a quantum model because the classical model likely already works well. If both
sC and sK are very large, the dataset is likely difficult to learn.

But notice that sC and sQ are giving us information about potential quantum advantages for a
specific dataset. They are dependent on the actual function values that we are trying to approximate.
What if for a particular function it is not worth using a quantum model, but for another function, it
is? If there are some functions which the quantum model can approximate better than the classical
model, then it is worth studying. This is what the geometric difference test in the first layer of the
flowchart seeks to determine.

The asymmetric geometric difference between two kernels K1 and K2 is given by

g12 =

√
||
√
K2(K1)−1

√
K2||∞. (4.9)

The importance of this distance arises from the following inequality

sK1 ≤ g2
12sK2 . (4.10)

Thus, the geometric difference gives us an idea about the separation of the model complexity,
without referencing a specific function. This is exactly what we need. If the geometric difference
gCQ between the quantum kernel and the classical kernel is big enough, then there exists some
dataset with a potential quantum advantage, and the quantum technique being used is worth
considering. Otherwise, we can safely say that classical ML is the better choice.

The red part of the flowchart corresponds to additional tests we can run if we are using the
quantum kernel method KQ

ij = kQ(xi, xj) = Tr(ρ(xi)ρ(xj)). Let d be the rank of KQ (d is also

called the effective dimension). If min(d,Tr(O2)) � N , then no matter the choice of UQNN , a
classical ML algorithm can learn the desired function. Hence, we can deduce that the problem here
is that the encoding being used is classically easy and not worth considering.

The analysis conducted by the authors revealed some problems in QML algorithms, such as the
fact that when the effective dimension d is large, the quantum kernel Tr[ρ(xi)ρ(xj)] will result in a
small geometric difference, in which case a classical ML algorithm is preferable. This lead them to
propose a new family of projected quantum kernels which work by projecting quantum states to some
approximate classical representation. The idea is that even if d is large, the projection reduces the
problem to a low dimensional space. In addition, by going through the quantum space in between the
original space and the reduced space, these kernels are difficult to compute classically. For example,
we can define a projected quantum kernel by using reduced physical observables. If we measure the
one particle reduced density matrix on all qubits of the encoded state, ρk(xi) = Trj!=k[ρ(xi)], we
can define a projected quantum kernel as kPQ(xi, xj) = exp(−γ

∑
k

||ρk(xi)− ρk(xj)||2F).

In their experiments, the authors find that projected quantum kernels increase the geometric
difference, which is a positive thing as per our previous discussion. Interestingly, the authors show
that projected quantum kernels can solve the discrete logarithm learning problem we discussed in a
previous section, thus showing that projected quantum kernel lead to a rigorous quantum speed up
for this problem. Let us now briefly discuss the experiments that the authors ran to validate their
methods. We note that these are the largest QML experiments and simulations to date, reaching
an impressive 1.1 quadrillion flops.

12

Robust empirical evidence of a quantum advantage in machine learning

Huang et al. empirically validated their ideas on the classical Fashion-MNIST dataset, three datasets
with function values that come from a quantum neural network, and a suite of datasets that are
specifically engineered to test the formulae relating the geometric difference, model complexity
and prediction accuracy. There are 3 possible quantum encodings, three standard quantum kernel
models (SVMs that estimate the kernel using quantum computers) that use the quantum kernel
k(xi, xj) = Tr[ρ(xi)ρ(xj)] (one model for each encoding), and three projected quantum kernel
models that use the kernel function

kPQ(xi, xj) = exp

−γ∑
k

∑
P∈{X,Y,Z}

(Tr[Pρ(xi)k]− Tr[Pρ(xj)k])
2

 . (4.11)

where γ is a hyper-parameter which is tuned to maximize the prediction accuracy, and X,Y and Z
are the Pauli matrices. The three possible quantum encodings are as follows:

1. A qubit rotation circuit, with |xi〉 =
n⊗
i=1

e−iXjxij |0n〉, where xij is the j-th entry of the data

point xi, and Xj is the Pauli X operator acting on the j-th qubit.

2. An IQP style encoding circuit, where |xi〉 = UZ(xi)H
⊗nUZ(xi)H

⊗n |0n〉, where UZ(xi) =

exp(
n∑
i=1

xijZj +
n∑
j=1

n∑
j′=1

xijxij′ZjZj′), where Zj is the Pauli Z operator acting on the j-th

qubit.

3. A Hamiltonian Evolution ansatz, where
|xi〉 = (

∏n
i=1 exp(−i tT xij(XjXj+1 +YjYj+1 +ZjZj+1)))

⊗n+1
j=1 |ψj〉. T is arbitrary (the authors

choose T = 20), and t is an arbitrary variable proportional to the number of qubits (the authors
choose t = n

3 . |ψj〉 is a Haar-random single qubit quantum state.

The list of classical algorithms (implemented in scikit-learn) that the authors considered for the
comparison are as follows: neural networks, linear kernels, Gaussian kernels, random forests, gra-
dient boosting, and AdaBoost. All classical and quantum machine learning algorithms had their
hyper-parameters optimized by a grid search. We note that some methods, such as random for-
est, do not have an associated kernel, but the authors still included them in the comparison for
prediction accuracy.

First, the authors studied the relationship between the effective dimension d and the geometric
difference gCQ for each quantum model. In theory, we would have to consider all possible classical
models and take the one with the smallest geometric distance to our quantum model, but in practice,
we only look at the geometric distance of the finite suite of well optimized machine learning models
such as Gaussian and Linear SVMs. The authors find that, as expected, when d becomes large, gCQ
decreases rapidly for the quantum kernel, which is in contrast to projected quantum kernels which
can maintain a sizable geometric difference even as d becomes large. If we recall from our discussion
of geometric difference, the formulae indicated that a large geometric difference is necessary for a
quantum model to outperform a classical one. The empirical results validate this: classical machine
learning outperforms or matches quantum models with a small geometric difference, while projected
quantum kernels with a large geometric difference can outperform classical machine learning models
on some of the datasets where function values come from a quantum neural network. For example,
on one such dataset, the projected quantum kernel with the Hamiltonian evolution embedding
achieved a prediction error of slightly less than 10%, while the best classical ML algorithm had a
prediction error of around 13%.

13

Finally, the authors tested their algorithms on the engineered datasets that are explicitly de-
signed to saturate inequality (4.10) between the classical and projected quantum models. In other
words, these datasets are specifically designed to study the effect of the geometric difference be-
tween projected quantum kernels and classical models. We will not discuss how these datasets
were constructed, but the algorithm is given in Appendix F of [4]. The authors find that as this
geometric difference increases, the difference in performance between the projected quantum kernel
and the standard quantum kernel and classical models increases as well, culminating in a difference
of more than 20% in prediction error for the dataset with the largest geometric distance! This is
an extremely significant result, as it is the first evidence of such a large separation in prediction
accuracy between quantum and classical models.

5 Conclusion

The Huang et al. [4] result, along with the other manuscripts surveyed in this report, give us a
roadmap towards obtaining practical advantages with quantum machine learning. The quantum
recommendation algorithm and dequantization results showed us that as a general rule of thumb,
relying on exotic data access models as the source of exponential advantages does not work; the
algorithm itself has to be the source of the advantage. We then saw that kernel methods that don’t
assume any unconventional data models are a good candidate for quantum advantages if the dataset
contains correlations that are hard to learn classically. Section 4.1 presents heuristic methods and
motivation towards that end, while Section 4.2 gives a rigorous proof of an exponential advantage
for the DLP problem, even though the problem is not practically motivated. Finally, Section 4.3
showed us that we have to be wary of the power of data in machine learning, as that can quickly
transform a classically hard problem into an easy one.

We also introduced a useful theoretical foundation for quantum kernel methods that can be
expanded on and used for empirical evidence and validation of new results. The question of whether
QML is worth applying in practice over classical ML is certainly not settled, but these promising
results will hopefully make for an exciting and useful research topic over the coming years.

14

6 Appendix

6.1 Rigorous Separation between BPP, BQP, and Classical Algorithms that
Learn from Data

A Complexity Class for Classical Algorithms that Learn from Data

Let’s define a complexity class for classical algorithms that learn from data. This part is simple:
the complexity class is just the bounded error probabilistic polynomial time (BPP) class with data
available. More rigorously, a language L is in this complexity class if we have the following:
There exists a probabilistic Turing Machine that takes in an input x of size n along with a dataset
D = {(xi, yi)}mi=1 , where yi = 1 if xi ∈ L and 0 otherwise, with m = poly(n), and we require that
this probabilistic turing machine runs in polynomial time on all inputs, that it outputs 1 on input
x with probability p > 2

3 if x ∈ L, and that it outputs 1 with p < 1
3 if x /∈ L. We also require that

the training data in D be sampled independently according to some distribution χ and we assume
that this sampling can be done in polynomial time on a classical Turing machine.

Proof of the Complexity Separation

The authors first give a simple proof that this new complexity class for classical algorithms that
learn from data (which we will refer to as CML from now on) is included in or equal to P/poly. They
then rigorously prove that there exists a separation between CML and BPP (and also BQP). The
idea behind the proof is very simple, and we repeat it here because it is very illuminating. Consider
some undecidable unary language Lhard = {1n}, n ∈ A for some subset A of the natural numbers.
Let Leasy be some easy language in BPP, and assume that for every input size n, ∃ an ∈ Leasy and
∃ bn /∈ Lhard. We define a new language L in the following way: for every n, if 1n is in Lhard, add
every x ∈ Leasy with |x| = n. Otherwise, if 1n /∈ Lhard, add every x /∈ Leasy with |x| = n. Is this
language in BPP? A simple proof by contradiction shows that it is not. Assume that the problem
of finding out whether x ∈ L is in BPP. Then we can do the following. Take some given x with
|x| = n, and check if it is in L. If it is, then check if is in Leasy. If it is, then by the definition of
L, 1n ∈ Lhard, and if it is not, then 1n /∈ Lhard. But this means that we can decide the undecidable
language Lhard, a contradiction! So the problem of finding out where x ∈ L is not in BPP. Since
Lhard is undecidable, the same result holds for BQP. We will now show an algorithm that, given
data, can decide whether x ∈ L in CML.

Suppose that for every n, we are given a single data point of the form (x0, y0), where |x0| = n
and y0 indicates whether x0 is in L or not. Then, if we are given some x and we want to check if
it is in L, we simply look at the corresponding data tuple (x0, y0) where |x| = |x0| that we have. If
x0 ∈ L, then x ∈ L, by definition, and if not, x /∈ L. Thus, we have a rigorous separation between
CML and BPP and BQP.

15

7 References

[1] Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. arXiv preprint
arXiv:1603.08675, 2016. 2, 3

[2] Ewin Tang. A quantum-inspired classical algorithm for recommendation systems. In Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 217–228,
2019. 2, 4

[3] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and robust quantum
speed-up in supervised machine learning. arXiv preprint arXiv:2010.02174, 2020. 2, 6, 7, 8

[4] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hart-
mut Neven, and Jarrod R McClean. Power of data in quantum machine learning. arXiv preprint
arXiv:2011.01938, 2020. 2, 9, 10, 14

[5] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems
of equations. Physical review letters, 103(15):150502, 2009. 2

[6] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, 2015. 3

[7] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for
big data classification. Physical review letters, 113(13):130503, 2014. 4

[8] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised and
unsupervised machine learning. arXiv preprint arXiv:1307.0411, 2013. 4

[9] Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and su-
pervised clustering. arXiv preprint arXiv:1811.00414, 2018. 4

[10] András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression
with logarithmic dependence on the dimension. arXiv preprint arXiv:1811.04909, 2018. 4

[11] Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang.
Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum
machine learning. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 387–400, 2020. 4

[12] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding
low-rank approximations. Journal of the ACM (JACM), 51(6):1025–1041, 2004. 5

[13] Vojtěch Havĺıček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Abhinav Kandala,
Jerry M Chow, and Jay M Gambetta. Supervised learning with quantum-enhanced feature
spaces. Nature, 567(7747):209–212, 2019. 6, 7

16

	Introduction
	Quantum Recommendation Algorithm
	Dequantization Result
	Quantum-inspired Classical Recommendation Algorithm

	Feature Mapping
	Supervised Machine Learning in Quantum Feature Spaces
	Quantum Kernel Estimation

	First Provable Exponential QML Advantage
	DLP
	Quantum Feature Map

	Power of Data in Quantum Machine Learning
	How Data Changes Complexity Theoretic Considerations
	Geometric Kernel Distances and the Projected Quantum Kernel

	Conclusion
	Appendix
	Rigorous Separation between BPP, BQP, and Classical Algorithms that Learn from Data

	References

