
9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 1/9

COMS 4281 - Intro to Quantum Computing

Problem Set 2, Quantum Info Basics

Due: October 9, 11:59pm

Collaboration is allowed and encouraged (teams of at most 3). Please read the syllabus

carefully for the guidlines regarding collaboration. In particular, everyone must write their

own solutions in their own words.

Write your collaborators here:

Problem 1: Non-standard Basis Measurements
a) Consider an orthonormal basis for . As we learned in class,

measuring a quantum state according to the basis yields outcome with

probability .

In class we also learned that this process was equivalent to first applying a unitary on ,

and then measuring the resulting state in the standard basis. In other words, the probability

of obtaining standard basis outcome when measuring in the standard basis, equal

to . What unitary accomplishes this? Give a description of and prove that it

works.

Solution

b) Now let's implement the unitary for measuring in the following basis :

and

First, write down the measurement probabilities if we measure the following states in the

basis :

In []: %run utils.py

B = {|b1⟩ , … , |bd⟩} C
d

|ψ⟩ ∈ C
d

B ∣∣bj⟩

|⟨bj|ψ⟩|
2

U |ψ⟩

|j⟩ U |ψ⟩

|⟨bj|ψ⟩|2 U U

B

|ψ0⟩ = cos(π/8) |0⟩ + sin(π/8) |1⟩

|ψ1⟩ = − sin(π/8) |0⟩ + cos(π/8) |1⟩

B

|1⟩ , |−⟩ , |+⟩ , cos(π/8) |0⟩ + sin(π/8) |1⟩

9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 2/9

Solution

c) In the code below, write the matrix that implements the change of basis from the

standard basis to the basis above.

Now we'll test your basis change on some states and plot their measurement statistics. You

should use this to check whether you implemented the right basis change .

U

In []: # ========= BEGIN CODE =================

U = [[1, 0],

 [0, 1]]
========= END CODE =================

def perform_basis_measurement(initial_state: List[float]) -> QuantumCircuit:

 qr = QuantumRegister(1, name="input state")

 cr = ClassicalRegister(1, name="output")

 qc = QuantumCircuit(qr, cr)

 qc.initialize(initial_state)

 qc.append(UnitaryGate(U), qr)

 qc.measure(qr, cr)

 return qc

U

In []: #First, we test it on the |1> state

qc1 = perform_basis_measurement([0.0, 1.0])

qc1.draw(output='mpl')

backend = Aer.get_backend('qasm_simulator')

job_sim = backend.run(transpile(qc1, backend), shots=5024)

Grab the results from the job.

result_sim = job_sim.result()

counts = result_sim.get_counts(qc1)

plot_histogram(counts)

In []: # Next we try it on the |-> state

qc1 = perform_basis_measurement([1.0/np.sqrt(2), -1.0/np.sqrt(2)])

qc1.draw(output='mpl')

backend = Aer.get_backend('qasm_simulator')

job_sim = backend.run(transpile(qc1, backend), shots=5024)

Grab the results from the job.

result_sim = job_sim.result()

counts = result_sim.get_counts(qc1)

plot_histogram(counts)

In []: #...and the |+> state

qc1 = perform_basis_measurement([1.0/np.sqrt(2), 1.0/np.sqrt(2)])

qc1.draw(output='mpl')

backend = Aer.get_backend('qasm_simulator')

job_sim = backend.run(transpile(qc1, backend), shots=5024)

Grab the results from the job.

result_sim = job_sim.result()

counts = result_sim.get_counts(qc1)

plot_histogram(counts)

9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 3/9

Problem 2: EPR Pair Properties
Let's examine properties of the EPR pair

In what follows, let's suppose that Alice is given the left qubit of the EPR pair, and Bob is

given the right qubit, and they are separated by a large distance.

a) Let be some orthonormal basis for . Suppose Alice measures her

qubit using basis . What are the statistics of the measurement outcomes (i.e. what are the

probability of or)?

Solution

b) Show that if Alice obtains measurement outcome for some , the post-

measurement state of the EPR pair is where is the complex conjugate of

 (i.e. the -th entry is the complex conjugate of the -th entry of).

This is interesting because Alice might have decided on the basis only after Bob was sent

away, yet Alice's measurement causes Bob's qubit to instantaneously collapse into one of

the basis states of (up to complex conjugation). This is a phenomenon called quantum

steering, because Alice is able to steer Bob's qubit, even though she is only acting on her

qubit.

Solution

c) Suppose that Bob then measures his qubit using an orthonormal basis .

What are the statistics of his measurement outcomes, conditioned on Alice's outcome?

Solution

d) Suppose the order of measurements were reversed: Bob measures his qubit first using

basis , and then Alice measures her qubit using basis . Show that the joint probability

In []: #and now the cos(pi/8) |0> + sin(pi/8) |1> state

qc1 = perform_basis_measurement([np.cos(math.pi/8), np.sin(math.pi/8)])

qc1.draw(output='mpl')

backend = Aer.get_backend('qasm_simulator')

job_sim = backend.run(transpile(qc1, backend), shots=5024)

Grab the results from the job.

result_sim = job_sim.result()

counts = result_sim.get_counts(qc1)

plot_histogram(counts)

|ψ⟩ = (|00⟩ + |11⟩) .
1

√2

A = {|a1⟩, |a2⟩} C
2

A

|a1⟩ |a2⟩

|ai⟩ i ∈ {1, 2}

|ai⟩ ⊗ |ai⟩
∗ |ai⟩

∗

|ai⟩ j j |ai⟩

A

B = {|b1⟩, |b2⟩}

B A

9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 4/9

distribution of their measurement outcomes is the same as before.

Solution

e) What can you conclude about the effectiveness of using quantum entanglement and

quantum steering as a method for faster-than-light communication? In other words, can

Alice and Bob, by only making local measurements on their entangled state, send

information to each other?

Solution

Problem 3: Quantum Teleportation with Noise
We saw how to teleport quantum states in class. Let's consider a twist on the standard

teleportation protocol. Let's imagine that when Alice and Bob meet up to create an

entangled state, the settings on their lab equipment was screwed up and they accidentally

create the following two-qubit entangled state

Only Alice realizes this after they haven each taken a qubit each and gone their separate

ways.

Suppose that Alice now gets a gift qubit . Is there a way that she can

still teleport to Bob, using their corrupted entangled state and the classical

communication channel? Like in the standard teleportation protocol, Alice can only apply

unitaries and measurements to her two qubits, and Bob will apply the same corrections as in

the standard teleportation protocal (since he's not aware of the corruption).

a) Show how the teleportation protocol can be adapted for the corruption from Alice's side

and analyze the correctness of your proposed protocol.

Solution

b) Now let's implement Alice's teleportation protocol using the noisy EPR pair with qiskit.

Write code in create_alice_noisy_tp_circuit function below, which takes as as

input a QuantumRegister (consisting of two qubits) and a ClassicalRegister (consisting of

two 2 bits).

Important Note: the register indices in Alice's and Bob's functions are local (0-indexed),

meaning that from Alice or Bob's point of view, her zeroth qubit is the gift qubit, and her first

|θ⟩ = |00⟩ − |01⟩ + |10⟩ + |11⟩ .
1

√3

1

√6

1

√6

1

√3

|ψ⟩ = α |0⟩ + β |1⟩

|ψ⟩ |θ⟩

9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 5/9

qubit is the first half of the EPR pair. From Bob's point of view, he only has the other half of

the EPR pair, which he considers his zeroth qubit.

Problem 4: Transferring Entanglement
Here we explore a task to transfer entanglement. Let's say there are three parties, Alice,

Bob, and Carol. Alice shares an EPR pair with Bob, and Bob shares an EPR pair with Carol

(so Alice has one qubit, Bob has two qubits, and Carol has one qubit).

a) Design and analyze a protocol that involves only classical communication between the

pairs (Alice,Bob), and (Bob,Carol), such that at the end Alice and Carol --- who never

directly interacted with each other --- now share an EPR pair.

Hint: use the teleportation protocol as inspiration.

In [78]: def initialize_noisy_epr_pair(qc: QuantumCircuit, qubits: List[int]) -> Quantum
 # For qc.initialize, the ordering of the states are |00>, |01>, |10>, |11>
 #if the top wire corresponds to the rightmost bit (recall the little endian
 qc.initialize([np.sqrt(1/3.0), np.sqrt(1/6.0), -np.sqrt(1/6.0), np.sqrt(1/3
 qc.barrier()

 return qc

def create_base_noisy_tp_circuit() -> QuantumCircuit:

 qr1 = QuantumRegister(1, name="psi")

 qr2 = QuantumRegister(2, name="theta")

 cr = ClassicalRegister(2, name="m")

 qc = QuantumCircuit(qr1, qr2, cr)

 return initialize_noisy_epr_pair(qc, [1, 2])

def create_alice_noisy_tp_circuit(qr: QuantumRegister, cr: ClassicalRegister) -
 qc = QuantumCircuit(qr, cr)

 # Alice has two qubits (index 0,1) and access to two classical registers (i
 # ========= BEGIN CODE =================

 # ========= END CODE =================

 return qc

def create_bob_noisy_tp_circuit(qr: QuantumRegister, cr: ClassicalRegister) ->
 qc = QuantumCircuit(qr, cr)

 qc.z(0).c_if(cr[0], 1) # Apply gates if the registers

 qc.x(0).c_if(cr[1], 1) # are in the state '1'

 return qc

In []: noisy_tp_circuit = create_base_noisy_tp_circuit()

noisy_tp_circuit = append(noisy_tp_circuit, create_alice_noisy_tp_circuit, [0,1
noisy_tp_circuit = append(noisy_tp_circuit, create_bob_noisy_tp_circuit, [2], [
noisy_tp_circuit.draw(output='mpl')

In []: test_noisy_teleportation(noisy_tp_circuit)

9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 6/9

Solution

b) Now let's implement Alice's, Bob's and Carol's parts of the entanglement swapping

circuit. You will have to implement what Alice, Bob, and Carol do with their qubits, and how

they classically communicate with each other. Fill in the functions in the places indicated

below.

Important note: see the important note in Problem 3 regarding the local indexing of qubits

in the Alice, Bob and Carol functions.

In []: def alice_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit
 qc = QuantumCircuit(qr, cr)

 # Alice has one qubit (index 0) and access to two classical registers (inde
 # ========= BEGIN CODE =================

 # ========= END CODE =================

 return QuantumCircuit(qr, cr)

def bob_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit:

 qc = QuantumCircuit(qr, cr)

 # Bob has two qubits (index 0,1) and access to four classical registers (in
 # ========= BEGIN CODE =================

 # ========= END CODE =================

 return qc

def carol_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircuit
 qc = QuantumCircuit(qr, cr)

 # Carol has one qubit (index 0) and access to two classical registers (inde
 # look up qiskit documentation for using classical registers to control qua
 # ========= BEGIN CODE =================

 # ========= END CODE =================

 return qc

def add_epr_pair(qc: QuantumCircuit, a, b):

 qc.h(a)
 qc.cnot(a,b)

 qc.barrier()

 return qc

def create_entanglement_swapping_circuit_base() -> QuantumCircuit:

 """

 This creates a circuit with 2 EPR pairs in registers {0, 1} and {2, 3} resp
 and four classical registers (labelled {0,1,2,3}).

 Alice will have access to qubit 0, and the first two classical registers ({
 Bob will have access to qubits 1 and 2, and all the classical registers ({0
 Carol will have access to qubit 3, and the last two classical registers ({2
 """

 qr1 = QuantumRegister(2, name="epr ab")

 qr2 = QuantumRegister(2, name="epr bc")

9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 7/9

Problem 5: Let's Play a (Nonlocal) Game

In class we learned about the CHSH game, let's consider another, slightly more complicated

game.

Let's say that you and your best friend want to pull a nasty prank on your mortal enemy*.

You decide to try to convince him that the vertices in the following graph can be colored red

or blue such that no two adjacent vertices have the same color (this is known as being -

colorable):

Clearly, this isn't possible, but you decide to give it a shot. You propose the following non-

local game to your enemy:

1. Your enemy picks a vertex in the graph (, , or) uniformly at random.

2. Your enemy gives you .

 num_classical_bits = 4

 cr = ClassicalRegister(num_classical_bits, name="cr")

 global_circuit = QuantumCircuit(qr1, qr2, cr)

 global_circuit = add_epr_pair(global_circuit, 0, 1)

 global_circuit = add_epr_pair(global_circuit, 2, 3)

 return global_circuit

def create_entanglement_swapping_circuit() -> QuantumCircuit:

 qc = create_entanglement_swapping_circuit_base()

 qc = append(qc, alice_circuit, [0],[0,1])

 qc.barrier()

 qc = append(qc, bob_circuit, [1, 2], [0, 1,2,3])

 qc.barrier()

 qc = append(qc, carol_circuit, [3], [2, 3])

 return qc

In []: entanglement_swapping_circuit = create_entanglement_swapping_circuit()

entanglement_swapping_circuit.draw(output = 'mpl')

In []: test_entanglement_swapping(entanglement_swapping_circuit)

2

s 0 1 2

s

9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 8/9

3. Your enemy gives your friend either or , with probability (call this

vertex).

4. You and your friend return colors (red or blue).

5. If the vertex your enemy gave you and your friend were the same vertex, he checks that

the colors are the same. Otherwise he checks that the colors are different.

(The enemy is the referee of this game, and you and your friend are like Alice and Bob in

CHSH)

a) What is the best probability that any classical strategy can win this game with?

Solution

b) Let's say you and your friend are resourceful and happened to share a single EPR pair

before playing the non-local game with your enemy. Fill in the following functions that take

in a quantum register (initialized to an EPR pair), and a question (from 0, 1, 2), and perform a

measurement that plays the game (outputting the result to the classical register). Try to get

the best winning probability you can.

Hint: use the CHSH strategy for inspiration.

s s + 1 mod 3 50%

t

In []: def alice_game_circuit(qr: QuantumRegister, cr: ClassicalRegister, question: in
 qc = QuantumCircuit(qr, cr)

 # Alice will need to apply a unitary gate, and then measure her qubit

 # ========= BEGIN CODE =================

 # ========= END CODE =================

 return qc

def bob_game_circuit(qr: QuantumRegister, cr: ClassicalRegister, question: int)
 qc = QuantumCircuit(qr, cr)

 # Bob will need to apply a unitary gate, and then measure his qubit

 # ========= BEGIN CODE =================

 # ========= END CODE =================

 return qc

In []: def play_game(question1: int, question2: int) -> float:

 hidden_state = QuantumRegister(2, name="epr_pair")

 answers = ClassicalRegister(2, name="answer")

 global_circuit = QuantumCircuit(hidden_state, answers)

 global_circuit = add_epr_pair(global_circuit, 0, 1)

 global_circuit = append(global_circuit, lambda qr, cr : alice_game_circuit(
 global_circuit = append(global_circuit, lambda qr, cr : bob_game_circuit(qr
 total_shots = 5024

 backend = Aer.get_backend('qasm_simulator')

 job_sim = backend.run(transpile(global_circuit, backend), shots=total_shots
 result_sim = job_sim.result()

 measurements = result_sim.get_counts(global_circuit)

 winning_shots = 0

 if question1 == question2:

 for measurement in measurements:

9/27/22, 11:56 AM pset2-public

localhost:8888/nbconvert/html/pset2-public.ipynb?download=false 9/9

c) Describe the strategy that you chose and it's expected winning probability.

Solution

BONUS PROBLEM If you think you have the optimal quantum strategy for this game, give a

proof that there is no better quantum strategy. You may assume Alice and Bob use 1 EPR

pair as their shared state.

Many extra points if you give a proof that considers all possible quantum strategies (any

entangled state, any possible measurements),

 if measurement[0] == measurement[1]:

 # Win this game

 winning_shots += measurements[measurement]

 else:

 for measurement in measurements:

 if measurement[0] != measurement[1]:

 # Win this game

 winning_shots += measurements[measurement]

 return winning_shots / total_shots

winning_probability = 0.0

for i in range(3):

 winning_probability += play_game(i, i)

 winning_probability += play_game(i, (i + 1) % 3)

print("Average Winning Probability: ", winning_probability / 6)

In []:

In []:

