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COMS 4281 - Intro to Quantum Computing

Problem Set 4: Hamiltonians, Algorithms, and
Complexity

Due: November 20, 11�59pm.

Collaboration is allowed and encouraged (teams of at most 3). Please read the syllabus

carefully for the guidlines regarding collaboration. In particular, everyone must write their

own solutions in their own words.

Write your collaborators here:

Problem 1: Hamiltonian Math

Problem 1.1

Let  be a Hamiltonian and let  be a ground state, i.e., it minimizes  over all

states. Show that  is an eigenvector.

Solution

Problem 1.2

Let  be a Hamiltonian and let  denote some initial state with average energy 

.

Let  denote the time evolution of  with respect to the Hamiltonian . In other

words,

Show that the energy of the state  with respect to  is still . In other words, show

that time evolution of a state with respect to a Hamiltonian conserves energy.

Solution

In [ ]: %run utils.py 

H |ψ⟩ ⟨ψ| H |ψ⟩

|ψ⟩

H |ψ(0)⟩

E = ⟨ψ(0)| H |ψ(0)⟩

|ψ(t)⟩ |ψ(0)⟩ H

|ψ(t)⟩ = e−iHt |ψ(0)⟩ .

|ψ(t)⟩ H E
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Problem 2: The 1D Ising model

Problem 2.1

Recall the 1-dimensional Ising model, which is a Hamiltonian describing a bunch of magnets

on a line:

where  is a real parameter that represents the strength of the global magnetic field

relative to the interactions between neighboring magnets.

Fix a string  and consider the corresponding -qubit basis state 

.

Give a formula for the quantity  in terms of the strings  and the parameter .

Use this to deduce the spectral decomposition (i.e. find its eigenvectors and eigenvalues) of

, as a function of .

Solution

Problem 2.2

Suppose . What is the minimum energy of  and what are the ground states of ?

What is the maximum energy of  and what states achieve the maximum energy?

Solution

Problem 2.3

Suppose . What is the ground energy and ground states of ? What about when 

?

Solution

Problem 2.4

H =
n−1

∑
j=1

Zj ⊗ Zj+1 + μ

n

∑
i=1

Zi

μ ∈ R

x ∈ {0, 1}n n

|x⟩ = |x1, … , xn⟩

⟨x| H |x⟩ x μ

H μ

μ = 0 H H

H

μ = 1 H

μ = −1
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Give a qualitative description of what the ground states of  are, depending on . What

happens as  or ? Are there "critical points" of  where the behavior of the

ground states seem to change?

Solution

Problem 3: Quantum Graph Algorithms

Problem 3.1

In this problem you will design a quantum query algorithm to determine whether a graph is

connected (i.e. there is a path between every pair of vertices). Let  be an -vertex

undirected graph and let  denote the  adjacency matrix for  (i.e.,  if and

only if there is an edge between vertices  and  in the graph). Suppose you are given

access to an oracle  that, on a basis state  for some  and ,

maps it to the state . In other words, if  is an edge in the graph, then 

, and otherwise .

Design and analyze a quantum algorithm that makes at most  calls to the

oracle  and determines if the graph  is connected with probability at least . To

design your algorithm, you may use any classical graph algorithm (depth-first search,

breadth-first search, etc.), combined with any of the quantum algorithms we have learned in

class as a subroutine.

This constitutes a quantum speedup, because any classical algorithm must make 

queries to the adjacency matrix  to determine whether a graph is connected (even if the

algorithm is randomized).

Hint: if you use Grover's algorithm that makes  queries as we've learned about it in

class, be mindful that it has some probability of error. In general, if the number of solutions

are not known ahead of time, then there is some constant probability of error (say at least 

).

Solution

Problem 3.2

Show that any quantum algorithm must make at least  queries to the oracle  in

order to determine whether the graph  is connected.

Hint: You can assume the optimality of Grover's algorithm for unstructured search.

H μ

μ → ∞ μ → −∞ μ

G n

A n × n G Aij = 1

i j

V |i, j, a⟩ i, j ∈ [n] a ∈ {0, 1}
∣∣i, j, a ⊕ Aij⟩ (i, j)

V |i, j, a⟩ = |i, j, a ⊕ 1⟩ V |i, j, a⟩ = |i, j, a⟩

O(n3/2 log n)

V G 99%

Ω(n2)

A

O(√n)

1%

Ω(√n) V

G
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Bonus: Prove that  queries to the oracle  are needed.

Solution

Problem 4: NP-hardness of estimating output
probabilities
Suppose that there existed a classical algorithm  that does the following amazing thing:

when given input  where  describes a quantum circuit acting on  qubits with 

gates, and  is an -bit string, it outputs a number  such that

where

is the probability that, when measuring the final state of  on all the all zeroes input, yields

measurement outcome . In other words, the output of the algorithm  on  is a

number that equal to  up to  digits of precision. Furthermore, the algorithm 

runs in time polynomial in  and .

Show that this would imply  by showing that, if such an amazing algorithm 

existed, then one could use  to solve 3SAT (or your favorite -complete problem) in

polynomial time. Therefore, one shouldn't expect it to be possible to efficiently calculate

output probabilities of general quantum circuits. Recall that in the 3SAT problem, you're

given a boolean formula of the form , and the

goal is to determine whether there exists an assignment to the variables that satisfies the

formula.

Hint: you'll want show that for an instance  of a -complete problem (such as 3SAT),

you can transform that problem into a polynomial-sized quantum circuit  such that the

answer to the problem  (whether it's satisfiable, graph colorable, etc.) can be encoded

into the probability of some outcome of measuring the circuit  on the all zeroes input.

Solution

Ω(n) V

A

(C, x) C n m

x n α

|α − p(C, x)| ≤ 2−10n

p(C, x) = |⟨x| C |0n⟩|
2
.

C

x A (C, x)

p(C, x) 10n A

n m

P = NP A

A NP

(x1 ∨ x2 ∨ ¬x5) ∧ (¬x7 ∨ x1 ∨ ¬x11) ∧ ⋯

φ NP

Cφ

φ

Cφ
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