
COMS 4281 - Intro to Quantum Computing

Problem Set 2, Quantum Info Basics

Due: October 11, 11�59pm

Collaboration is allowed and encouraged (teams of at most 3). Please read the syllabus

carefully for the guidlines regarding collaboration. In particular, everyone must write their

own solutions in their own words.

Write your collaborators here:

Problem 1: Non-standard Basis
Measurements
a) Consider an orthonormal basis for . As we learned in class,

measuring a quantum state according to the basis yields outcome with

probability .

In class we also learned that this process was equivalent to first applying a unitary on

, and then measuring the resulting state in the standard basis. In other words, the

probability of obtaining standard basis outcome when measuring in the

standard basis, equal to . What unitary accomplishes this? Give an algebraic

expression for , such as a sum of outer products, or a description of the rows/columns

of , etc. Then prove that it works.

Your Solution:

write your solution here, using LaTeX and Markdown

b) Now let's implement the unitary for measuring in the following basis :

and

In []: %run utils.py

B = {|b1⟩ , … , |bd⟩} C
d

|ψ⟩ ∈ C
d

B ∣∣bj⟩

|⟨bj|ψ⟩|
2

U

|ψ⟩

|j⟩ U |ψ⟩

|⟨bj|ψ⟩|
2

U

U

U

B

|ψ0⟩ = cos(π/8) |0⟩ + sin(π/8) |1⟩

|ψ1⟩ = − sin(π/8) |0⟩ + cos(π/8) |1⟩

First, write down the measurement probabilities if we measure the following states in the

basis :

Your Solution:

write your solution here, using LaTeX and Markdown

c) In the code below, write the matrix that implements the change of basis from the

standard basis to the basis above.

Now we'll test your basis change on some states and plot their measurement statistics.

You should use this to check whether you implemented the right basis change .

B

|1⟩ , |−⟩ , |+⟩ , cos(π/8) |0⟩ + sin(π/8) |1⟩

U

In []: # ========= BEGIN CODE =================

========= END CODE =================

def perform_basis_measurement(initial_state: List[float]) -> QuantumCircuit:
 qr = QuantumRegister(1, name="input state")
 cr = ClassicalRegister(1, name="output")
 qc = QuantumCircuit(qr, cr)
 qc.initialize(initial_state)
 qc.append(UnitaryGate(U), qr)
 qc.measure(qr, cr)
 return qc

U

In []: #First, we test it on the |1> state
qc1 = perform_basis_measurement([0.0, 1.0])
qc1.draw(output='mpl')
backend = Aer.get_backend('qasm_simulator')
job_sim = backend.run(transpile(qc1, backend), shots=5024)

Grab the results from the job.
result_sim = job_sim.result()
counts = result_sim.get_counts(qc1)
plot_histogram(counts)

In []: # Next we try it on the |-> state
qc1 = perform_basis_measurement([1.0/np.sqrt(2), -1.0/np.sqrt(2)])
qc1.draw(output='mpl')
backend = Aer.get_backend('qasm_simulator')
job_sim = backend.run(transpile(qc1, backend), shots=5024)

Grab the results from the job.
result_sim = job_sim.result()
counts = result_sim.get_counts(qc1)
plot_histogram(counts)

Problem 2: EPR Pair Properties

Let's examine properties of the EPR pair

In what follows, let's suppose that Alice is given the left qubit of the EPR pair, and Bob is

given the right qubit, and they are separated by a large distance.

a) Let be some orthonormal basis for . Suppose Alice measures her

qubit using basis . What are the statistics of the measurement outcomes (i.e. what are

the probability of or)?

Your Solution:

write your solution here, using LaTeX and Markdown

b) Show that if Alice obtains measurement outcome for some , the post-

measurement state of the EPR pair is where is the complex conjugate

of (i.e. the -th entry is the complex conjugate of the -th entry of).

This is interesting because Alice might have decided on the basis only after Bob was

sent away, yet Alice's measurement causes Bob's qubit to instantaneously collapse into

one of the basis states of (up to complex conjugation). This is a phenomenon called

In []: #...and the |+> state
qc1 = perform_basis_measurement([1.0/np.sqrt(2), 1.0/np.sqrt(2)])
qc1.draw(output='mpl')
backend = Aer.get_backend('qasm_simulator')
job_sim = backend.run(transpile(qc1, backend), shots=5024)

Grab the results from the job.
result_sim = job_sim.result()
counts = result_sim.get_counts(qc1)
plot_histogram(counts)

In []: #and now the cos(pi/8) |0> + sin(pi/8) |1> state
qc1 = perform_basis_measurement([np.cos(math.pi/8), np.sin(math.pi/8)])
qc1.draw(output='mpl')
backend = Aer.get_backend('qasm_simulator')
job_sim = backend.run(transpile(qc1, backend), shots=5024)

Grab the results from the job.
result_sim = job_sim.result()
counts = result_sim.get_counts(qc1)
plot_histogram(counts)

|ψ⟩ = (|00⟩ + |11⟩) .
1

√2

A = {|a1⟩, |a2⟩} C
2

A

|a1⟩ |a2⟩

|ai⟩ i ∈ {1, 2}

|ai⟩ ⊗ |ai⟩
∗ |ai⟩

∗

|ai⟩ j j |ai⟩

A

quantum steering, because Alice is able to steer Bob's qubit, even though she is only

acting on her qubit.

Your Solution:

write your solution here, using LaTeX and Markdown

c) Suppose that Bob then measures his qubit using an orthonormal basis

. What are the statistics of his measurement outcomes, conditioned on

Alice's outcome?

Your Solution:

write your solution here, using LaTeX and Markdown

d) Suppose the order of measurements were reversed: Bob measures his qubit first

using basis , and then Alice measures her qubit using basis . Show that the joint

probability distribution of their measurement outcomes is the same as before.

Your Solution:

write your solution here, using LaTeX and Markdown

e) What can you conclude about the effectiveness of using quantum entanglement and

quantum steering as a method for faster-than-light communication? In other words, can

Alice and Bob, by only making local measurements on their entangled state, send

information to each other?

Your Solution:

write your solution here, using LaTeX and Markdown

Problem 3: Quantum Teleportation with
Noise
We saw how to teleport quantum states in class. Let's consider a twist on the standard

teleportation protocol. Let's imagine that when Alice and Bob meet up to create an

entangled state, the settings on their lab equipment was screwed up and they

accidentally create the following two-qubit entangled state

B = {|b1⟩, |b2⟩}

B A

|θ⟩ = |00⟩ − |01⟩ + |10⟩ + |11⟩ .
1

√3

1

√6

1

√6

1

√3

Only Alice realizes this after they haven each taken a qubit each and gone their separate

ways.

Suppose that Alice now gets a gift qubit . Is there a way that she can

still teleport to Bob, using their corrupted entangled state and the classical

communication channel? Like in the standard teleportation protocol, Alice can only apply

unitaries and measurements to her two qubits, and Bob will apply the same corrections

as in the standard teleportation protocal (since he's not aware of the corruption).

a) Show how the teleportation protocol can be adapted for the corruption from Alice's

side and analyze the correctness of your proposed protocol.

Your Solution:

write your solution here, using LaTeX and Markdown

b) Now let's implement Alice's teleportation protocol using the noisy EPR pair with qiskit.

Write code in create_alice_noisy_tp_circuit function below, which takes as as

input a QuantumRegister (consisting of two qubits) and a ClassicalRegister (consisting

of two 2 bits).

Important Note: the register indices in Alice's and Bob's functions are local (0-

indexed), meaning that from Alice or Bob's point of view, her zeroth qubit is the gift

qubit, and her first qubit is the first half of the EPR pair. From Bob's point of view, he only

has the other half of the EPR pair, which he considers his zeroth qubit.

|ψ⟩ = α |0⟩ + β |1⟩

|ψ⟩ |θ⟩

In []: def initialize_noisy_epr_pair(qc: QuantumCircuit, qubits: List[int]) -> Quan
 # For qc.initialize, the ordering of the states are |00>, |01>, |10>, |1
 #if the top wire corresponds to the rightmost bit (recall the little end
 qc.initialize([np.sqrt(1/3.0), np.sqrt(1/6.0), -np.sqrt(1/6.0), np.sqrt(
 qc.barrier()
 return qc

def create_base_noisy_tp_circuit() -> QuantumCircuit:
 qr1 = QuantumRegister(1, name="psi")
 qr2 = QuantumRegister(2, name="theta")
 cr = ClassicalRegister(2, name="m")
 qc = QuantumCircuit(qr1, qr2, cr)
 return initialize_noisy_epr_pair(qc, [1, 2])

def create_alice_noisy_tp_circuit(qr: QuantumRegister, cr: ClassicalRegister
 qc = QuantumCircuit(qr, cr)
 # Alice has two qubits (index 0,1) and access to two classical registers
 # ========= BEGIN CODE =================

 # ========= END CODE =================
 return qc

Problem 4: Transferring Entanglement

Here we explore a task to transfer entanglement. Let's say there are three parties,

Alice, Bob, and Carol. Alice shares an EPR pair with Bob, and Bob shares an EPR pair

with Carol (so Alice has one qubit, Bob has two qubits, and Carol has one qubit).

a) Design and analyze a protocol that involves only classical communication between the

pairs (Alice,Bob), and (Bob,Carol), such that at the end Alice and Carol --- who never

directly interacted with each other --- now share an EPR pair.

Hint: use the teleportation protocol as inspiration.

Your Solution:

write your solution here, using LaTeX and Markdown

b) Now let's implement Alice's, Bob's and Carol's parts of the entanglement transferring

circuit. You will have to implement what Alice, Bob, and Carol do with their qubits, and

how they classically communicate with each other. Fill in the functions in the places

indicated below.

Important note: see the important note in Problem 3 regarding the local indexing of

qubits in the Alice, Bob and Carol functions.

def create_bob_noisy_tp_circuit(qr: QuantumRegister, cr: ClassicalRegister)
 qc = QuantumCircuit(qr, cr)
 qc.z(0).c_if(cr[0], 1) # Apply gates if the registers
 qc.x(0).c_if(cr[1], 1) # are in the state '1'
 return qc

In []: noisy_tp_circuit = create_base_noisy_tp_circuit()
noisy_tp_circuit = append(noisy_tp_circuit, create_alice_noisy_tp_circuit, [
noisy_tp_circuit = append(noisy_tp_circuit, create_bob_noisy_tp_circuit, [2]
noisy_tp_circuit.draw(output='mpl')

In []: test_noisy_teleportation(noisy_tp_circuit)

In []: def alice_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCirc
 qc = QuantumCircuit(qr, cr)
 # Alice has one qubit (index 0) and access to two classical registers (i
 # ========= BEGIN CODE =================

 # ========= END CODE =================
 return QuantumCircuit(qr, cr)

def bob_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCircui

 qc = QuantumCircuit(qr, cr)
 # Bob has two qubits (index 0,1) and access to four classical registers
 # ========= BEGIN CODE =================

 # ========= END CODE =================
 return qc

def carol_circuit(qr: QuantumRegister, cr: ClassicalRegister) -> QuantumCirc
 qc = QuantumCircuit(qr, cr)
 # Carol has one qubit (index 0) and access to two classical registers (i
 # look up qiskit documentation for using classical registers to control
 # ========= BEGIN CODE =================

 # ========= END CODE =================
 return qc

def add_epr_pair(qc: QuantumCircuit, a, b):
 qc.h(a)
 qc.cnot(a,b)
 qc.barrier()
 return qc

def create_entanglement_transfer_circuit_base() -> QuantumCircuit:
 """
 This creates a circuit with 2 EPR pairs in registers {0, 1} and {2, 3} r
 and four classical registers (labelled {0,1,2,3}).
 Alice will have access to qubit 0, and the first two classical registers
 Bob will have access to qubits 1 and 2, and all the classical registers
 Carol will have access to qubit 3, and the last two classical registers
 """
 qr1 = QuantumRegister(2, name="epr ab")
 qr2 = QuantumRegister(2, name="epr bc")

 num_classical_bits = 4

 cr = ClassicalRegister(num_classical_bits, name="cr")
 global_circuit = QuantumCircuit(qr1, qr2, cr)
 global_circuit = add_epr_pair(global_circuit, 0, 1)
 global_circuit = add_epr_pair(global_circuit, 2, 3)
 return global_circuit

def create_entanglement_transfer_circuit() -> QuantumCircuit:
 qc = create_entanglement_transfer_circuit_base()

 qc = append(qc, alice_circuit, [0],[0,1])
 qc.barrier()
 qc = append(qc, bob_circuit, [1, 2], [0, 1,2,3])
 qc.barrier()
 qc = append(qc, carol_circuit, [3], [2, 3])

 return qc

In []: entanglement_transfer_circuit = create_entanglement_transfer_circuit()
entanglement_transfer_circuit.draw(output = 'mpl')

Problem 5: Let's Play a (Nonlocal) Game

In class we learned about the CHSH game, let's consider another game, called Let's

Confuse Charlie.

The game is inspired by the following simple fact: the vertices in the following graph

cannot be colored red or blue such that adjacent vertices have different colors. In other

words, the triangle is not -colorable.

Nonetheless, Alice and Bob decide to make a game to convince a third party, called

Charlie, that it is possible to -color a triangle. (They have a lot of time on their hands,

clearly). Consider the following game:

�. Charlie picks a vertex in the graph (, , or) uniformly at random, and sends to

Alice.

�. Charlie picks a that is either or with probability each, and then

sends to Bob.

�. Alice and Bob have to give colors "red" or "blue" back to Charlie.

�. If , then Alice and Bob win if they give the same color. If , then Alice and

Bob win if they have different colors.

a) What is the best probability that any local hidden variable (LHV) strategy for Alice and

Bob can win this game?

Your Solution:

write your solution here, using LaTeX and Markdown

b) In this part you will come up with a quantum strategy for Alice and Bob to beat the

LHV (i.e. classical) winning probability. You will code up a strategy by specifying a

measurement for Alice that depends on her question , and a measurement for Bob that

depends on his question . We assume that Alice and Bob share a single EPR pair

In []: test_entanglement_transfer(entanglement_transfer_circuit)

2

2

s 0 1 2 s

t s s + 1 mod 3 1
2

t

s = t s ≠ t

s

t

. So in "alice_game_circuit" for example, you will write based on

Alice's question (which is , or) what single-qubit gates Alice performs on her

qubit using the qc object (which has a single qubit), and then finally Alice should

perform a measurement on her qubit to obtain a or (which represents the reported

color of her vertex). You will do a similar thing for Bob.

Try to get the best winning probability you can.

Hint: use the CHSH strategy for inspiration.

The following code will test how well your strategy performs.

(|00⟩ + |11⟩)1

√2

s 0 1 2

0 1

In []: def alice_game_circuit(qr: QuantumRegister, cr: ClassicalRegister, s: int) -
 qc = QuantumCircuit(qr, cr)
 # Alice will need to apply a unitary gate, and then measure her qubit
 # ========= BEGIN CODE =================

 # ========= END CODE =================
 return qc

def bob_game_circuit(qr: QuantumRegister, cr: ClassicalRegister, t: int) ->
 qc = QuantumCircuit(qr, cr)
 # Bob will need to apply a unitary gate, and then measure his qubit
 # ========= BEGIN CODE =================

 # ========= END CODE =================
 return qc

In []: def play_game(s: int, t: int) -> float:
 hidden_state = QuantumRegister(2, name="epr_pair")
 answers = ClassicalRegister(2, name="answer")
 global_circuit = QuantumCircuit(hidden_state, answers)
 global_circuit = add_epr_pair(global_circuit, 0, 1)
 global_circuit = append(global_circuit, lambda qr, cr : alice_game_circu
 global_circuit = append(global_circuit, lambda qr, cr : bob_game_circuit
 total_shots = 5024
 backend = Aer.get_backend('qasm_simulator')
 job_sim = backend.run(transpile(global_circuit, backend), shots=total_sh
 result_sim = job_sim.result()
 measurements = result_sim.get_counts(global_circuit)
 winning_shots = 0
 if s == t:
 for measurement in measurements:
 if measurement[0] == measurement[1]:
 # Win this game
 winning_shots += measurements[measurement]
 else:
 for measurement in measurements:
 if measurement[0] != measurement[1]:
 # Win this game
 winning_shots += measurements[measurement]
 return winning_shots / total_shots

c) Describe the strategy that you chose, and algebraically compute its winning

probability (i.e. carry out a calculation similar to how the quantum strategy for CHSH was

analyzed in class), and confirm it matches the numerics above.

Your Solution:

write your solution here, using LaTeX and Markdown

BONUS PROBLEM If you think you have the optimal quantum strategy for this game,

give a proof that there is no better quantum strategy. You may assume Alice and Bob use

1 EPR pair as their shared state.

Your Solution:

write your solution here, using LaTeX and Markdown

winning_probability = 0.0
for i in range(3):
 winning_probability += play_game(i, i)
 winning_probability += play_game(i, (i + 1) % 3)
print("Average Winning Probability: ", winning_probability / 6)

In []:

